Abstract

The linear transform kernel for fractional Fourier transforms is derived. The spatial resolution and the space–bandwidth product for propagation in graded-index media are discussed in direct relation to fractional Fourier transforms, and numerical examples are presented. It is shown how fractional Fourier transforms can be made the basis of generalized spatial filtering systems: Several filters are interleaved between several fractional transform stages, thereby increasing the number of degrees of freedom available in filter synthesis.

© 1993 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription