Abstract

Transient chromatic adaptation produced by an abrupt change of background color permits an easier and closer approach to cone isolation than does steady-state adaptation. Using this technique, we measured middle-wave-sensitive (M-) cone spectral sensitivities in 11 normals and 2 protanopes and long-wavelength-sensitive (L-) cone spectral sensitivities in 12 normals and 4 deuteranopes. Although there is great individual variation in the adapting intensity required for effective isolation, there is little variation in the shape of the M- and L-cone spectral-sensitivity functions across subjects. At middle and long wavelengths, our mean spectral sensitivities agree extremely well with dichromatic spectral sensitivities and with the M- and L-cone fundamentals of Smith and Pokorny [ Vision Res. 15, 161 ( 1975)] and of Vos and Walraven [ Vision Res. 11, 799 ( 1971)], both of which are based on the CIE (Judd-revised) 2° color-matching functions (CMF’s). But the agreement with the M-cone fundamentals of Estévez [ Ph.D. dissertation, Amsterdam University ( 1979)] and of Vos et al. [ Vision Res. 30, 936 ( 1990)], which are based on the Stiles–Burch 2° CMF’s, is poor. Using our spectral-sensitivity data, tritanopic color-matching data, and Stiles’s π3, we derive new sets of cone fundamentals. The consistency of the proposed fundamentals based on either the Stiles–Burch 2° CMF’s or the CIE 10° large-field CMF’s with each other, with protanopic and deuteranopic spectral sensitivities, with tritanopic color-matching data, and with short-wavelength-sensitive (S-) cone spectral-sensitivity data suggests that they are to be perferred over fundamentals based on the CIE 2° CMF’s.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
    [Crossref] [PubMed]
  2. A. Eisner, D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,”J. Opt. Soc. Am. 71, 705–718 (1981).
    [Crossref] [PubMed]
  3. A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of W. S. Stiles,” Perception 15, 729–754 (1986).
    [Crossref]
  4. A. Stockman, D. I. A. MacLeod, J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
    [Crossref]
  5. P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
    [Crossref] [PubMed]
  6. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  7. T. Young, Lectures on Natural Philosophy (Johnson, London, 1807), Vol. II.
  8. A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum,” Sitz. Akad. Wiss. Berlin 1886, 805–829 (1986).
  9. H. M. O. Scheibner, R. M. Boynton, “Residual red–green discrimination in dichromats,”J. Opt. Soc. Am. 58, 1151–1158 (1968).
    [Crossref] [PubMed]
  10. A. L. Nagy, “Large-field substitution Rayleigh matches of dichromats,”J. Opt. Soc. Am. 70, 778–783 (1980).
    [Crossref]
  11. M. E. Breton, W. B. Cowan, “Deuteranomalous color matching in the deuteranopic eye,”J. Opt. Soc. Am. 71, 1220–1223 (1981).
    [Crossref]
  12. H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
    [Crossref]
  13. W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold technique,” Coloquio Prob. Opt. Vision 1, 65–103 (1953).
  14. J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in the human retina,”J. Physiol. (London) 298, 501–512 (1980).
  15. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  16. H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physika 14, 367–380 (1948).
  17. G. S. Brindley, “The effects on colour vision of adaptation to very bright lights,”J. Physiol. (London) 122, 332–350 (1953).
  18. W. S. Stiles, “Foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1018 (1964).
    [Crossref] [PubMed]
  19. D. I. A. MacLeod, M. Hayhoe, “Three pigments in normal and anomalous color vision,”J. Opt. Soc. Am. 64, 92–96 (1974).
    [Crossref] [PubMed]
  20. J. Nathans, D. Thomas, S. G. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
    [Crossref] [PubMed]
  21. J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
    [Crossref] [PubMed]
  22. M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,”J. Physiol. (London) 266, 613–646 (1977).
  23. M. Alpern, “Variation in the visual pigments of human dichromats and normal human trichromats,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium, National Research Council Committee on Vision, ed. (National Academy Press, Washington, D.C., 1987).
  24. M. Alpern, T. Wake, “Cone pigments in human deutan color vision defects,”J. Physiol. (London) 266, 595–612 (1977).
  25. B. L. Bastian, “Individual differences among the photo-pigments of protan observers,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1976).
  26. D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.
  27. M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
    [Crossref] [PubMed]
  28. W. S. Stiles, J. M. Burch, “NPL colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
    [Crossref]
  29. V. C. Smith, J. Pokorny, S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
    [Crossref]
  30. J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Micro-spectrophotometric results for Old and New World primates,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).
  31. J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
    [Crossref]
  32. J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
    [Crossref]
  33. J. Neitz, G. H. Jacobs, “Polymorphism in normal human colour vision and its mechanism,” Vision Res. 30, 621–636 (1990).
    [Crossref]
  34. G. Jordan, J. D. Mollon, “Two kinds of men?” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 164 (1988).
  35. M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
    [Crossref] [PubMed]
  36. J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
    [Crossref]
  37. J. Neitz, G. H. Jacobs, “Polymorphism of cone pigments among color normals: evidence from color matching,” in Colour Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 27–34.
    [Crossref]
  38. M. A. Webster, “Reanalysis of λmaxvariations in the Stiles–Burch 10° color-matching functions,” J. Opt. Soc. Am. A 9, 1419–1421 (1992).
    [Crossref] [PubMed]
  39. D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the Twelfth Session of the CIE, Stockholm, Technical Committee No. 7 (Bureau Central de la CIE, Paris, 1951).
  40. J. J. Vos, “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [Crossref]
  41. G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
    [Crossref] [PubMed]
  42. R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in the human eye,” Vision Res. 11, 1057–1064 (1971).
    [Crossref] [PubMed]
  43. P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
    [Crossref] [PubMed]
  44. D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [Crossref]
  45. B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Section B 62, 321–334 (1949).
    [Crossref]
  46. G. S. Brindley, J. J. Du Croz, W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J., Physiol. (London) 183, 497–500 (1966).
  47. A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [Crossref] [PubMed]
  48. G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).
  49. F. Viénot, “Can variation in macular pigment account for the variation of colour matches with retinal position?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 107–116.
  50. K. H. Ruddock, “The effect of age upon colour vision II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
    [Crossref] [PubMed]
  51. J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries” (Institute for Perception, Netherlands Organization for Applied Scientific Research, Soesterberg, The Netherlands, 1972).
  52. R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
    [PubMed]
  53. R. J. W. Mansfield, “Primate photopigments and cone mechanisms,” in The Visual System, A. Fein, J. S. Levine, eds. (Liss, New York, 1985).
  54. E. F. MacNichol, “A unifying presentation of photopigment spectra,” Vision Res. 26, 1543–1556 (1986).
    [Crossref] [PubMed]
  55. J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [Crossref] [PubMed]
  56. P. L. Walraven, “A closer look at the tritanopic confusion point,” Vision Res. 14, 1339–1343 (1974).
    [Crossref] [PubMed]
  57. J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 936–943 (1990).
    [Crossref]
  58. O. Estévez, “On the fundamental database of normal and dichromatic color vision,” Ph.D. dissertation (Amsterdam University, Amsterdam, 1979).
  59. CIE, Commission Internationale de l’Eclairage Proceedings, 1931 (Cambridge U. Press, Cambridge, 1932).
  60. J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).
  61. W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1928–1929).
    [Crossref]
  62. CIE, Commission Internationale de l’Eclairage Proceedings, 1924 (Cambridge U. Press, Cambridge, 1926).
  63. G. S. Brindley, “The colour of light of very long wavelength,”J. Physiol. (London) 130, 35–44 (1955).
  64. H. G. Sperling, “An experimental investigation of the relationship between colour mixture and luminance efficiency,” in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 1, pp. 249–277.
  65. K. S. Gibson, E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Bur. Stand. 19, 131–191 (1923).
    [Crossref]
  66. Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, London, 1968).
  67. W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
    [Crossref]
  68. E. N. Pugh, C. Sigel, “Evaluation of the candidacy of the π-mechanisms of Stiles for color-matching fundamentals,” Vision Res. 18, 317–330 (1978).
    [Crossref]
  69. F. H. G. Pitt, Characteristics of Dichromatic Vision, Medical Research Council Special Report Series No. 200 (His Majesty’s Stationery Office, London, 1935).
  70. S. Hecht, “Brightness, visual acuity and color blindness,” Doc. Ophthalmol. 3, 289–306 (1949).
    [Crossref]
  71. E. N. Willmer, “Further observations on the properties of the central fovea in colour-blind and normal subjects,”J. Physiol. (London) 110, 422–446 (1950).
  72. Y. Hsia, C. H. Graham, “Spectral luminosity curves for protanopic, deuteranopic, and normal subjects,” Proc. Natl. Acad. Sci. (USA) 43, 1011–1019 (1957).
    [Crossref]
  73. L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
    [Crossref]
  74. A. Stockman, “The spectral sensitivities of the middle- and long-wavelength cone mechanisms,” Ph.D. dissertation (University of Cambridge, Cambridge, 1983).
  75. B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
    [Crossref]
  76. W. D. Wright, “The characteristics of tritanopia,”J. Opt. Soc. Am. 42, 509–521 (1952).
    [Crossref] [PubMed]
  77. M. Alpern, “Tritanopia,” Am. J. Optom. Physiol. Opt. 53, 340–349 (1976).
    [Crossref] [PubMed]
  78. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [Crossref] [PubMed]
  79. V. C. Smith, J. Pokorny, Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).
  80. N. I. Speranskaya, “Determination of spectrum color coordinates for twenty-seven normal observers,” Opt. Spectrosc. (USSR) 7, 424–428 (1959).
  81. S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).
  82. W. S. Stiles, “The average colour matching functions for a large matching field,” in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 1, pp. 209–247.
  83. H. R. Blackwell, O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
    [Crossref]
  84. W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978).
  85. E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 20, 779–788 (1979).
    [Crossref]
  86. J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).
  87. E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.
  88. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “The photo-current, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. (London) 357, 575–607 (1984).
  89. A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977), Vol. 2B.
  90. M. Alpern, “Lack of uniformity in colour matching,”J. Physiol. (London) 288, 85–105 (1979).
  91. H. Terstiege, “Untersuchungen zum Persistenz- und Koeffizientesatz,” Farbe 16, 1–120 (1967).
  92. G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1982).
    [Crossref]
  93. S. S. Miller, “Psychophysical estimates of visual pigment densities in red–green dichromats,”J. Physiol. (London) 223, 89–107 (1972).
  94. V. C. Smith, J. Pokorny, “Psychophysical estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
    [Crossref] [PubMed]
  95. S. A. Burns, A. E. Elsner, “Color matching at high luminances: photopigment optical density and pupil entry,” J. Opt. Soc. Am. A 10, 221–230 (1993).
    [Crossref] [PubMed]
  96. M. Alpern, H. Kitahara, G. H. Fielder, “The change in color matches with retinal angle of incidence of the colorimeter beams,” Vision Res. 27, 1763–1778 (1987).
    [Crossref] [PubMed]
  97. P. L. Walraven, M. A. Bouman, “Relation between directional sensitivity and spectral response curves in human cone vision,”J. Opt. Soc. Am. 50, 780–784 (1960).
    [Crossref] [PubMed]
  98. J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
    [Crossref]
  99. W. A. H. Rushton, “The density of chlorolabe in the foveal cones of a protanope,”J. Physiol. (London) 168, 360–373 (1963).
  100. P. E. King-Smith, “The optical density of erythrolabe determined by retinal densitometry using the self-screening method,”J. Physiol. (London) 230, 535–549 (1973).
  101. P. E. King-Smith, “The optical density of erythrolabe determined by a new method,”J. Physiol. (London) 230, 551–560 (1973).
  102. W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
    [Crossref]
  103. M. Alpern, K. Kitahara, R. Tamaki, “The dependence of the colour and brightness of a monochromatic light upon its angle of incidence on the retina,”J. Physiol. (London) 338, 651–668 (1983).
  104. P. L. Walraven, “The Stiles–Crawford effects in normal and anomalous color vision,” in Opthalmic and Visual Optics, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 118–121.
  105. G. H. Jacobs, “Variations in colour vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (CRC, Boca Raton, Fla., 1991), pp. 1127–1144.
  106. P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [Crossref] [PubMed]
  107. J. M. Enoch, “Optical properties of the retinal receptors,”J. Opt. Soc. Am. 53, 71–85 (1963).
    [Crossref]
  108. J. M. Enoch, “Nature of the transmission of energy in the retinal receptors,”J. Opt. Soc. Am. 51, 1122–1126 (1961).
    [Crossref] [PubMed]
  109. A. W. Snyder, “Photoreceptor optics—theoretical principles,” in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 38–55.
    [Crossref]
  110. B. R. Horowitz, “Theoretical considerations of the retinal receptor as a waveguide,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 217–300.
  111. J. K. Bowmaker, “Cone visual pigments in monkeys and humans,” in Advances in Photoreception: Proceedings of a Symposium on the Frontiers of Visual Science, National Research Council Committee on Vision, ed. (National Academy Press, Washington, D.C., 1990).
  112. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filter spectra,” Vision Res. 22, 635–643 (1982).
    [Crossref]
  113. R. M. Boynton, “Contributions of threshold measurements to color-discrimination theory,”J. Opt. Soc. Am. 53, 165–178 (1963).
    [Crossref]
  114. J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
    [Crossref]
  115. H. E. Ives, “Studies in the photometry of lights of different colours. I. Spectral luminosity curves obtained by the equality of brightness photometer and flicker photometer under similar conditions,” Philos. Mag. Ser. 6 24, 149–188 (1912).
    [Crossref]
  116. E. Schrödinger, “Über das Verhältnis der Vierfarben zur Dreifarbentheorie,” Sitzungberichte, Akad. Wiss. Wien Math-Naturwis. Kl., Abt. 2a 134, 471 (1925).
  117. R. Luther, “Aus dem Gebiet der Farbreizmetrik,”Z. Tech. Phys. 8, 540–558 (1927).
  118. G. L. Walls, “A branched-pathway schema for the color-vision system and some of the evidence for it,” Am. J. Ophthalmol. 39, 8–23 (1955).
    [PubMed]
  119. S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
    [Crossref] [PubMed]
  120. W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987).
    [Crossref] [PubMed]
  121. A. Stockman, D. I. A. MacLeod, “An inverted S-cone input to the luminance channel: evidence for two processes in S-cone flicker detection,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 92 (1987).
  122. J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).
  123. P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
    [Crossref] [PubMed]

1993 (2)

1992 (3)

P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

M. A. Webster, “Reanalysis of λmaxvariations in the Stiles–Burch 10° color-matching functions,” J. Opt. Soc. Am. A 9, 1419–1421 (1992).
[Crossref] [PubMed]

1991 (1)

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[Crossref] [PubMed]

1990 (3)

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[Crossref] [PubMed]

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 936–943 (1990).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism in normal human colour vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[Crossref]

1989 (1)

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

1988 (3)

G. Jordan, J. D. Mollon, “Two kinds of men?” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 164 (1988).

M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[Crossref] [PubMed]

R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

1987 (6)

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[Crossref]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987).
[Crossref] [PubMed]

A. Stockman, D. I. A. MacLeod, “An inverted S-cone input to the luminance channel: evidence for two processes in S-cone flicker detection,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 92 (1987).

M. Alpern, H. Kitahara, G. H. Fielder, “The change in color matches with retinal angle of incidence of the colorimeter beams,” Vision Res. 27, 1763–1778 (1987).
[Crossref] [PubMed]

1986 (6)

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of W. S. Stiles,” Perception 15, 729–754 (1986).
[Crossref]

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum,” Sitz. Akad. Wiss. Berlin 1886, 805–829 (1986).

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

J. Nathans, D. Thomas, S. G. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

E. F. MacNichol, “A unifying presentation of photopigment spectra,” Vision Res. 26, 1543–1556 (1986).
[Crossref] [PubMed]

1984 (2)

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “The photo-current, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. (London) 357, 575–607 (1984).

1983 (2)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[Crossref]

M. Alpern, K. Kitahara, R. Tamaki, “The dependence of the colour and brightness of a monochromatic light upon its angle of incidence on the retina,”J. Physiol. (London) 338, 651–668 (1983).

1982 (3)

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[Crossref]

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filter spectra,” Vision Res. 22, 635–643 (1982).
[Crossref]

G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1982).
[Crossref]

1981 (2)

1980 (2)

A. L. Nagy, “Large-field substitution Rayleigh matches of dichromats,”J. Opt. Soc. Am. 70, 778–783 (1980).
[Crossref]

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in the human retina,”J. Physiol. (London) 298, 501–512 (1980).

1979 (3)

M. Alpern, “Lack of uniformity in colour matching,”J. Physiol. (London) 288, 85–105 (1979).

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
[Crossref] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 20, 779–788 (1979).
[Crossref]

1978 (3)

J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).

E. N. Pugh, C. Sigel, “Evaluation of the candidacy of the π-mechanisms of Stiles for color-matching fundamentals,” Vision Res. 18, 317–330 (1978).
[Crossref]

J. J. Vos, “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

1977 (2)

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,”J. Physiol. (London) 266, 613–646 (1977).

M. Alpern, T. Wake, “Cone pigments in human deutan color vision defects,”J. Physiol. (London) 266, 595–612 (1977).

1976 (2)

M. Alpern, “Tritanopia,” Am. J. Optom. Physiol. Opt. 53, 340–349 (1976).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[Crossref]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1974 (5)

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

D. I. A. MacLeod, M. Hayhoe, “Three pigments in normal and anomalous color vision,”J. Opt. Soc. Am. 64, 92–96 (1974).
[Crossref] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

P. L. Walraven, “A closer look at the tritanopic confusion point,” Vision Res. 14, 1339–1343 (1974).
[Crossref] [PubMed]

L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
[Crossref]

1973 (4)

V. C. Smith, J. Pokorny, “Psychophysical estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

P. E. King-Smith, “The optical density of erythrolabe determined by retinal densitometry using the self-screening method,”J. Physiol. (London) 230, 535–549 (1973).

P. E. King-Smith, “The optical density of erythrolabe determined by a new method,”J. Physiol. (London) 230, 551–560 (1973).

P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
[Crossref] [PubMed]

1972 (1)

S. S. Miller, “Psychophysical estimates of visual pigment densities in red–green dichromats,”J. Physiol. (London) 223, 89–107 (1972).

1971 (2)

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in the human eye,” Vision Res. 11, 1057–1064 (1971).
[Crossref] [PubMed]

1968 (2)

H. M. O. Scheibner, R. M. Boynton, “Residual red–green discrimination in dichromats,”J. Opt. Soc. Am. 58, 1151–1158 (1968).
[Crossref] [PubMed]

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

1967 (1)

H. Terstiege, “Untersuchungen zum Persistenz- und Koeffizientesatz,” Farbe 16, 1–120 (1967).

1966 (1)

G. S. Brindley, J. J. Du Croz, W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J., Physiol. (London) 183, 497–500 (1966).

1965 (1)

K. H. Ruddock, “The effect of age upon colour vision II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
[Crossref] [PubMed]

1964 (2)

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

W. S. Stiles, “Foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1018 (1964).
[Crossref] [PubMed]

1963 (3)

1961 (3)

J. M. Enoch, “Nature of the transmission of energy in the retinal receptors,”J. Opt. Soc. Am. 51, 1122–1126 (1961).
[Crossref] [PubMed]

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[Crossref]

H. R. Blackwell, O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[Crossref]

1960 (1)

1959 (2)

W. S. Stiles, J. M. Burch, “NPL colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[Crossref]

N. I. Speranskaya, “Determination of spectrum color coordinates for twenty-seven normal observers,” Opt. Spectrosc. (USSR) 7, 424–428 (1959).

1957 (1)

Y. Hsia, C. H. Graham, “Spectral luminosity curves for protanopic, deuteranopic, and normal subjects,” Proc. Natl. Acad. Sci. (USA) 43, 1011–1019 (1957).
[Crossref]

1955 (3)

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[Crossref]

G. S. Brindley, “The colour of light of very long wavelength,”J. Physiol. (London) 130, 35–44 (1955).

G. L. Walls, “A branched-pathway schema for the color-vision system and some of the evidence for it,” Am. J. Ophthalmol. 39, 8–23 (1955).
[PubMed]

1953 (2)

G. S. Brindley, “The effects on colour vision of adaptation to very bright lights,”J. Physiol. (London) 122, 332–350 (1953).

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold technique,” Coloquio Prob. Opt. Vision 1, 65–103 (1953).

1952 (1)

1950 (1)

E. N. Willmer, “Further observations on the properties of the central fovea in colour-blind and normal subjects,”J. Physiol. (London) 110, 422–446 (1950).

1949 (2)

S. Hecht, “Brightness, visual acuity and color blindness,” Doc. Ophthalmol. 3, 289–306 (1949).
[Crossref]

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Section B 62, 321–334 (1949).
[Crossref]

1948 (1)

H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physika 14, 367–380 (1948).

1945 (1)

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[Crossref] [PubMed]

1937 (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[Crossref]

1931 (1)

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).

1927 (1)

R. Luther, “Aus dem Gebiet der Farbreizmetrik,”Z. Tech. Phys. 8, 540–558 (1927).

1925 (1)

E. Schrödinger, “Über das Verhältnis der Vierfarben zur Dreifarbentheorie,” Sitzungberichte, Akad. Wiss. Wien Math-Naturwis. Kl., Abt. 2a 134, 471 (1925).

1923 (1)

K. S. Gibson, E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Bur. Stand. 19, 131–191 (1923).
[Crossref]

1912 (1)

H. E. Ives, “Studies in the photometry of lights of different colours. I. Spectral luminosity curves obtained by the equality of brightness photometer and flicker photometer under similar conditions,” Philos. Mag. Ser. 6 24, 149–188 (1912).
[Crossref]

Adams, A. J.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987).
[Crossref] [PubMed]

Alexander, J. V.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

Alpern, M.

M. Alpern, H. Kitahara, G. H. Fielder, “The change in color matches with retinal angle of incidence of the colorimeter beams,” Vision Res. 27, 1763–1778 (1987).
[Crossref] [PubMed]

M. Alpern, K. Kitahara, R. Tamaki, “The dependence of the colour and brightness of a monochromatic light upon its angle of incidence on the retina,”J. Physiol. (London) 338, 651–668 (1983).

M. Alpern, “Lack of uniformity in colour matching,”J. Physiol. (London) 288, 85–105 (1979).

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,”J. Physiol. (London) 266, 613–646 (1977).

M. Alpern, T. Wake, “Cone pigments in human deutan color vision defects,”J. Physiol. (London) 266, 595–612 (1977).

M. Alpern, “Tritanopia,” Am. J. Optom. Physiol. Opt. 53, 340–349 (1976).
[Crossref] [PubMed]

M. Alpern, “Variation in the visual pigments of human dichromats and normal human trichromats,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium, National Research Council Committee on Vision, ed. (National Academy Press, Washington, D.C., 1987).

Barlow, H. B.

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filter spectra,” Vision Res. 22, 635–643 (1982).
[Crossref]

Bastian, B. L.

B. L. Bastian, “Individual differences among the photo-pigments of protan observers,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1976).

Baylor, D. A.

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[Crossref]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “The photo-current, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. (London) 357, 575–607 (1984).

Blackwell, H. R.

H. R. Blackwell, O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[Crossref]

Blackwell, O. M.

H. R. Blackwell, O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[Crossref]

Bone, R. A.

R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in the human eye,” Vision Res. 11, 1057–1064 (1971).
[Crossref] [PubMed]

Bouman, M. A.

Bowmaker, J. K.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[Crossref]

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in the human retina,”J. Physiol. (London) 298, 501–512 (1980).

J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).

J. K. Bowmaker, “Cone visual pigments in monkeys and humans,” in Advances in Photoreception: Proceedings of a Symposium on the Frontiers of Visual Science, National Research Council Committee on Vision, ed. (National Academy Press, Washington, D.C., 1990).

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Micro-spectrophotometric results for Old and New World primates,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Boynton, R. M.

Breton, M. E.

Brindley, G. S.

G. S. Brindley, J. J. Du Croz, W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J., Physiol. (London) 183, 497–500 (1966).

G. S. Brindley, “The colour of light of very long wavelength,”J. Physiol. (London) 130, 35–44 (1955).

G. S. Brindley, “The effects on colour vision of adaptation to very bright lights,”J. Physiol. (London) 122, 332–350 (1953).

Burch, J. M.

W. S. Stiles, J. M. Burch, “NPL colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[Crossref]

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[Crossref]

Burns, S. A.

Chumbly, J. I.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

Collins, B. A.

E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.

Cowan, W. B.

Cox, N. J.

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[Crossref] [PubMed]

Crawford, B. H.

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Section B 62, 321–334 (1949).
[Crossref]

Dartnall, H. J. A.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[Crossref]

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in the human retina,”J. Physiol. (London) 298, 501–512 (1980).

J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).

A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977), Vol. 2B.

De Vries, H. L.

H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physika 14, 367–380 (1948).

Deeb, S. S.

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

DeMarco, P.

DePriest, D. D.

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[Crossref] [PubMed]

Dieterici, C.

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum,” Sitz. Akad. Wiss. Berlin 1886, 805–829 (1986).

Du Croz, J. J.

G. S. Brindley, J. J. Du Croz, W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J., Physiol. (London) 183, 497–500 (1966).

Eddy, R. L.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Eisner, A.

Elsner, A. E.

Enoch, J. M.

Estévez, O.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 936–943 (1990).
[Crossref]

O. Estévez, “On the fundamental database of normal and dichromatic color vision,” Ph.D. dissertation (Amsterdam University, Amsterdam, 1979).

Fernandez, L.

R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Fielder, G. H.

M. Alpern, H. Kitahara, G. H. Fielder, “The change in color matches with retinal angle of incidence of the colorimeter beams,” Vision Res. 27, 1763–1778 (1987).
[Crossref] [PubMed]

Gibson, K. S.

K. S. Gibson, E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Bur. Stand. 19, 131–191 (1923).
[Crossref]

Gillman, C. B.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

Graham, C. H.

Y. Hsia, C. H. Graham, “Spectral luminosity curves for protanopic, deuteranopic, and normal subjects,” Proc. Natl. Acad. Sci. (USA) 43, 1011–1019 (1957).
[Crossref]

Guild, J.

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).

Guth, S. L.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

Hayhoe, M.

Hecht, S.

S. Hecht, “Brightness, visual acuity and color blindness,” Doc. Ophthalmol. 3, 289–306 (1949).
[Crossref]

Hogness, S. G.

J. Nathans, D. Thomas, S. G. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Horowitz, B. R.

B. R. Horowitz, “Theoretical considerations of the retinal receptor as a waveguide,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 217–300.

Hsia, Y.

Y. Hsia, C. H. Graham, “Spectral luminosity curves for protanopic, deuteranopic, and normal subjects,” Proc. Natl. Acad. Sci. (USA) 43, 1011–1019 (1957).
[Crossref]

Ives, H. E.

H. E. Ives, “Studies in the photometry of lights of different colours. I. Spectral luminosity curves obtained by the equality of brightness photometer and flicker photometer under similar conditions,” Philos. Mag. Ser. 6 24, 149–188 (1912).
[Crossref]

Jacobs, G. H.

J. Neitz, G. H. Jacobs, “Polymorphism in normal human colour vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Micro-spectrophotometric results for Old and New World primates,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

J. Neitz, G. H. Jacobs, “Polymorphism of cone pigments among color normals: evidence from color matching,” in Colour Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 27–34.
[Crossref]

G. H. Jacobs, “Variations in colour vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (CRC, Boca Raton, Fla., 1991), pp. 1127–1144.

Jordan, G.

G. Jordan, J. D. Mollon, “Two kinds of men?” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 164 (1988).

Judd, D. B.

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the Twelfth Session of the CIE, Stockholm, Technical Committee No. 7 (Bureau Central de la CIE, Paris, 1951).

King-Smith, P. E.

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

P. E. King-Smith, “The optical density of erythrolabe determined by retinal densitometry using the self-screening method,”J. Physiol. (London) 230, 535–549 (1973).

P. E. King-Smith, “The optical density of erythrolabe determined by a new method,”J. Physiol. (London) 230, 551–560 (1973).

Kitahara, H.

M. Alpern, H. Kitahara, G. H. Fielder, “The change in color matches with retinal angle of incidence of the colorimeter beams,” Vision Res. 27, 1763–1778 (1987).
[Crossref] [PubMed]

Kitahara, K.

M. Alpern, K. Kitahara, R. Tamaki, “The dependence of the colour and brightness of a monochromatic light upon its angle of incidence on the retina,”J. Physiol. (London) 338, 651–668 (1983).

Knowles, A.

A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977), Vol. 2B.

König, A.

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum,” Sitz. Akad. Wiss. Berlin 1886, 805–829 (1986).

Kraft, T. W.

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[Crossref]

Landrum, J. T.

R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Le Grand, Y.

Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, London, 1968).

Lee, J.

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

Levine, J. S.

E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.

Lindsey, D. T.

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

Lipetz, L. E.

E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.

Luther, R.

R. Luther, “Aus dem Gebiet der Farbreizmetrik,”Z. Tech. Phys. 8, 540–558 (1927).

Lutze, M.

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[Crossref] [PubMed]

Lythgoe, J. N.

J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
[Crossref]

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[Crossref] [PubMed]

M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[Crossref] [PubMed]

A. Stockman, D. I. A. MacLeod, “An inverted S-cone input to the luminance channel: evidence for two processes in S-cone flicker detection,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 92 (1987).

A. Eisner, D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,”J. Opt. Soc. Am. 71, 705–718 (1981).
[Crossref] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
[Crossref] [PubMed]

D. I. A. MacLeod, M. Hayhoe, “Three pigments in normal and anomalous color vision,”J. Opt. Soc. Am. 64, 92–96 (1974).
[Crossref] [PubMed]

D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.

MacNichol, E. F.

E. F. MacNichol, “A unifying presentation of photopigment spectra,” Vision Res. 26, 1543–1556 (1986).
[Crossref] [PubMed]

E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.

Mansfield, R. J. W.

E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.

R. J. W. Mansfield, “Primate photopigments and cone mechanisms,” in The Visual System, A. Fein, J. S. Levine, eds. (Liss, New York, 1985).

Marks, L. E.

L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
[Crossref]

Miller, S. S.

S. S. Miller, “Psychophysical estimates of visual pigment densities in red–green dichromats,”J. Physiol. (London) 223, 89–107 (1972).

Mollon, J. D.

G. Jordan, J. D. Mollon, “Two kinds of men?” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 164 (1988).

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of W. S. Stiles,” Perception 15, 729–754 (1986).
[Crossref]

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[Crossref]

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[Crossref]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 20, 779–788 (1979).
[Crossref]

J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Micro-spectrophotometric results for Old and New World primates,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Motulsky, A. G.

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

Nagy, A. L.

Nathans, J.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

J. Nathans, D. Thomas, S. G. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

Neitz, J.

J. Neitz, G. H. Jacobs, “Polymorphism in normal human colour vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism of cone pigments among color normals: evidence from color matching,” in Colour Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 27–34.
[Crossref]

Nuccio, E.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “The photo-current, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. (London) 357, 575–607 (1984).

Patterson, M. M.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

Pease, P. L.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

Piantanida, T. P.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Pitt, F. H. G.

F. H. G. Pitt, Characteristics of Dichromatic Vision, Medical Research Council Special Report Series No. 200 (His Majesty’s Stationery Office, London, 1935).

Pokorny, J.

P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref] [PubMed]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[Crossref]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Psychophysical estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Polyak, S. L.

S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).

Pugh, E. N.

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 20, 779–788 (1979).
[Crossref]

E. N. Pugh, C. Sigel, “Evaluation of the candidacy of the π-mechanisms of Stiles for color-matching fundamentals,” Vision Res. 18, 317–330 (1978).
[Crossref]

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,”J. Physiol. (London) 266, 613–646 (1977).

Ruddock, K. H.

K. H. Ruddock, “The effect of age upon colour vision II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
[Crossref] [PubMed]

Rushton, W. A. H.

G. S. Brindley, J. J. Du Croz, W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J., Physiol. (London) 183, 497–500 (1966).

W. A. H. Rushton, “The density of chlorolabe in the foveal cones of a protanope,”J. Physiol. (London) 168, 360–373 (1963).

Sanocki, E.

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

Scheibner, H. M. O.

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[Crossref]

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “The photo-current, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. (London) 357, 575–607 (1984).

Schrödinger, E.

E. Schrödinger, “Über das Verhältnis der Vierfarben zur Dreifarbentheorie,” Sitzungberichte, Akad. Wiss. Wien Math-Naturwis. Kl., Abt. 2a 134, 471 (1925).

Shows, T. B.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Sigel, C.

E. N. Pugh, C. Sigel, “Evaluation of the candidacy of the π-mechanisms of Stiles for color-matching fundamentals,” Vision Res. 18, 317–330 (1978).
[Crossref]

Smith, V. C.

P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[Crossref] [PubMed]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[Crossref]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Psychophysical estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Snyder, A. W.

A. W. Snyder, “Photoreceptor optics—theoretical principles,” in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 38–55.
[Crossref]

Sparrock, J. M. B.

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in the human eye,” Vision Res. 11, 1057–1064 (1971).
[Crossref] [PubMed]

Speranskaya, N. I.

N. I. Speranskaya, “Determination of spectrum color coordinates for twenty-seven normal observers,” Opt. Spectrosc. (USSR) 7, 424–428 (1959).

Sperling, H. G.

H. G. Sperling, “An experimental investigation of the relationship between colour mixture and luminance efficiency,” in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 1, pp. 249–277.

Starr, S. J.

V. C. Smith, J. Pokorny, S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[Crossref]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1982).
[Crossref]

W. S. Stiles, “Foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1018 (1964).
[Crossref] [PubMed]

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[Crossref]

W. S. Stiles, J. M. Burch, “NPL colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[Crossref]

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[Crossref]

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold technique,” Coloquio Prob. Opt. Vision 1, 65–103 (1953).

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[Crossref]

W. S. Stiles, “The average colour matching functions for a large matching field,” in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 1, pp. 209–247.

W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978).

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Stockman, A.

A. Stockman, D. I. A. MacLeod, J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
[Crossref]

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[Crossref] [PubMed]

A. Stockman, D. I. A. MacLeod, “An inverted S-cone input to the luminance channel: evidence for two processes in S-cone flicker detection,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 92 (1987).

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of W. S. Stiles,” Perception 15, 729–754 (1986).
[Crossref]

A. Stockman, “The spectral sensitivities of the middle- and long-wavelength cone mechanisms,” Ph.D. dissertation (University of Cambridge, Cambridge, 1983).

Stromeyer, C. F.

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

Tamaki, R.

M. Alpern, K. Kitahara, R. Tamaki, “The dependence of the colour and brightness of a monochromatic light upon its angle of incidence on the retina,”J. Physiol. (London) 338, 651–668 (1983).

Tarsis, S. L.

R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Teller, S. Y.

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

Terstiege, H.

H. Terstiege, “Untersuchungen zum Persistenz- und Koeffizientesatz,” Farbe 16, 1–120 (1967).

Thomas, D.

J. Nathans, D. Thomas, S. G. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

Tyndall, E. P. T.

K. S. Gibson, E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Bur. Stand. 19, 131–191 (1923).
[Crossref]

van Norren, D.

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

Verdon, W.

Viénot, F.

F. Viénot, “Can variation in macular pigment account for the variation of colour matches with retinal position?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 107–116.

Vivien, J. A.

Vos, J. J.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 936–943 (1990).
[Crossref]

J. J. Vos, “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries” (Institute for Perception, Netherlands Organization for Applied Scientific Research, Soesterberg, The Netherlands, 1972).

Wake, T.

M. Alpern, T. Wake, “Cone pigments in human deutan color vision defects,”J. Physiol. (London) 266, 595–612 (1977).

Wald, G.

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[Crossref] [PubMed]

Walls, G. L.

G. L. Walls, “A branched-pathway schema for the color-vision system and some of the evidence for it,” Am. J. Ophthalmol. 39, 8–23 (1955).
[PubMed]

Walraven, P. L.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 936–943 (1990).
[Crossref]

P. L. Walraven, “A closer look at the tritanopic confusion point,” Vision Res. 14, 1339–1343 (1974).
[Crossref] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

P. L. Walraven, M. A. Bouman, “Relation between directional sensitivity and spectral response curves in human cone vision,”J. Opt. Soc. Am. 50, 780–784 (1960).
[Crossref] [PubMed]

P. L. Walraven, “The Stiles–Crawford effects in normal and anomalous color vision,” in Opthalmic and Visual Optics, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 118–121.

Webb, J. R.

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

Webster, M. A.

Whittle, P.

P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
[Crossref] [PubMed]

Willmer, E. N.

E. N. Willmer, “Further observations on the properties of the central fovea in colour-blind and normal subjects,”J. Physiol. (London) 110, 422–446 (1950).

Winderickx, J.

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

Wright, W. D.

W. D. Wright, “The characteristics of tritanopia,”J. Opt. Soc. Am. 42, 509–521 (1952).
[Crossref] [PubMed]

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1928–1929).
[Crossref]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1982).
[Crossref]

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Young, T.

T. Young, Lectures on Natural Philosophy (Johnson, London, 1807), Vol. II.

Zaidi, Q.

V. C. Smith, J. Pokorny, Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Am. J. Ophthalmol. (1)

G. L. Walls, “A branched-pathway schema for the color-vision system and some of the evidence for it,” Am. J. Ophthalmol. 39, 8–23 (1955).
[PubMed]

Am. J. Optom. Physiol. Opt. (1)

M. Alpern, “Tritanopia,” Am. J. Optom. Physiol. Opt. 53, 340–349 (1976).
[Crossref] [PubMed]

Ann. Rev. Psychol. (1)

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[Crossref]

Coloquio Prob. Opt. Vision (1)

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold technique,” Coloquio Prob. Opt. Vision 1, 65–103 (1953).

Color Res. Appl. (1)

J. J. Vos, “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

Doc. Ophthalmol. (1)

S. Hecht, “Brightness, visual acuity and color blindness,” Doc. Ophthalmol. 3, 289–306 (1949).
[Crossref]

Farbe (1)

H. Terstiege, “Untersuchungen zum Persistenz- und Koeffizientesatz,” Farbe 16, 1–120 (1967).

Invest. Ophthalmol. Vis. Sci. (1)

R. A. Bone, J. T. Landrum, L. Fernandez, S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Vis. Sci. 29, 843–849 (1988).
[PubMed]

Invest. Ophthalmol. Vis. Sci. Suppl. (2)

G. Jordan, J. D. Mollon, “Two kinds of men?” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 164 (1988).

A. Stockman, D. I. A. MacLeod, “An inverted S-cone input to the luminance channel: evidence for two processes in S-cone flicker detection,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 92 (1987).

J. Opt. Soc. Am. (11)

R. M. Boynton, “Contributions of threshold measurements to color-discrimination theory,”J. Opt. Soc. Am. 53, 165–178 (1963).
[Crossref]

W. D. Wright, “The characteristics of tritanopia,”J. Opt. Soc. Am. 42, 509–521 (1952).
[Crossref] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
[Crossref] [PubMed]

P. L. Walraven, M. A. Bouman, “Relation between directional sensitivity and spectral response curves in human cone vision,”J. Opt. Soc. Am. 50, 780–784 (1960).
[Crossref] [PubMed]

J. M. Enoch, “Optical properties of the retinal receptors,”J. Opt. Soc. Am. 53, 71–85 (1963).
[Crossref]

J. M. Enoch, “Nature of the transmission of energy in the retinal receptors,”J. Opt. Soc. Am. 51, 1122–1126 (1961).
[Crossref] [PubMed]

D. I. A. MacLeod, M. Hayhoe, “Three pigments in normal and anomalous color vision,”J. Opt. Soc. Am. 64, 92–96 (1974).
[Crossref] [PubMed]

H. M. O. Scheibner, R. M. Boynton, “Residual red–green discrimination in dichromats,”J. Opt. Soc. Am. 58, 1151–1158 (1968).
[Crossref] [PubMed]

A. L. Nagy, “Large-field substitution Rayleigh matches of dichromats,”J. Opt. Soc. Am. 70, 778–783 (1980).
[Crossref]

M. E. Breton, W. B. Cowan, “Deuteranomalous color matching in the deuteranopic eye,”J. Opt. Soc. Am. 71, 1220–1223 (1981).
[Crossref]

A. Eisner, D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,”J. Opt. Soc. Am. 71, 705–718 (1981).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (16)

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,”J. Physiol. (London) 413, 563–593 (1989).

M. Alpern, “Lack of uniformity in colour matching,”J. Physiol. (London) 288, 85–105 (1979).

S. S. Miller, “Psychophysical estimates of visual pigment densities in red–green dichromats,”J. Physiol. (London) 223, 89–107 (1972).

W. A. H. Rushton, “The density of chlorolabe in the foveal cones of a protanope,”J. Physiol. (London) 168, 360–373 (1963).

P. E. King-Smith, “The optical density of erythrolabe determined by retinal densitometry using the self-screening method,”J. Physiol. (London) 230, 535–549 (1973).

P. E. King-Smith, “The optical density of erythrolabe determined by a new method,”J. Physiol. (London) 230, 551–560 (1973).

M. Alpern, K. Kitahara, R. Tamaki, “The dependence of the colour and brightness of a monochromatic light upon its angle of incidence on the retina,”J. Physiol. (London) 338, 651–668 (1983).

J. K. Bowmaker, H. J. A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey Macaca mulatta,” J. Physiol. (London) 274, 329–348 (1978).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “The photo-current, noise and spectral sensitivity of rods of the monkey macaca fascicularis,” J. Physiol. (London) 357, 575–607 (1984).

E. N. Willmer, “Further observations on the properties of the central fovea in colour-blind and normal subjects,”J. Physiol. (London) 110, 422–446 (1950).

G. S. Brindley, “The colour of light of very long wavelength,”J. Physiol. (London) 130, 35–44 (1955).

G. S. Brindley, “The effects on colour vision of adaptation to very bright lights,”J. Physiol. (London) 122, 332–350 (1953).

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,”J. Physiol. (London) 266, 613–646 (1977).

M. Alpern, T. Wake, “Cone pigments in human deutan color vision defects,”J. Physiol. (London) 266, 595–612 (1977).

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in the human retina,”J. Physiol. (London) 298, 501–512 (1980).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

J., Physiol. (London) (1)

G. S. Brindley, J. J. Du Croz, W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J., Physiol. (London) 183, 497–500 (1966).

Nature (London) (4)

J. Winderickx, D. T. Lindsey, E. Sanocki, S. Y. Teller, A. G. Motulsky, S. S. Deeb, “A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals,” Nature (London) 356, 431–433 (1992).
[Crossref]

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

Opt. Acta (3)

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[Crossref]

W. S. Stiles, J. M. Burch, “NPL colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[Crossref]

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[Crossref]

Opt. Spectrosc. (USSR) (1)

N. I. Speranskaya, “Determination of spectrum color coordinates for twenty-seven normal observers,” Opt. Spectrosc. (USSR) 7, 424–428 (1959).

Perception (1)

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of W. S. Stiles,” Perception 15, 729–754 (1986).
[Crossref]

Philos. Mag. Ser. 6 (1)

H. E. Ives, “Studies in the photometry of lights of different colours. I. Spectral luminosity curves obtained by the equality of brightness photometer and flicker photometer under similar conditions,” Philos. Mag. Ser. 6 24, 149–188 (1912).
[Crossref]

Philos. Trans. R. Soc. London Ser. A (1)

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).

Physika (1)

H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physika 14, 367–380 (1948).

Proc. Natl. Acad. Sci. (USA) (1)

Y. Hsia, C. H. Graham, “Spectral luminosity curves for protanopic, deuteranopic, and normal subjects,” Proc. Natl. Acad. Sci. (USA) 43, 1011–1019 (1957).
[Crossref]

Proc. Phys. Soc. London Section B (1)

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Section B 62, 321–334 (1949).
[Crossref]

Proc. R. Soc. London Ser. B (2)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[Crossref]

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[Crossref]

Sci. Papers Bur. Stand. (1)

K. S. Gibson, E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Bur. Stand. 19, 131–191 (1923).
[Crossref]

Science (5)

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[Crossref] [PubMed]

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

W. S. Stiles, “Foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1018 (1964).
[Crossref] [PubMed]

J. Nathans, D. Thomas, S. G. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, S. G. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Sitz. Akad. Wiss. Berlin (1)

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum,” Sitz. Akad. Wiss. Berlin 1886, 805–829 (1986).

Sitzungberichte, Akad. Wiss. Wien Math-Naturwis. Kl., Abt. 2a (1)

E. Schrödinger, “Über das Verhältnis der Vierfarben zur Dreifarbentheorie,” Sitzungberichte, Akad. Wiss. Wien Math-Naturwis. Kl., Abt. 2a 134, 471 (1925).

Trans. Opt. Soc. (1)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1928–1929).
[Crossref]

Vision Res. (24)

E. F. MacNichol, “A unifying presentation of photopigment spectra,” Vision Res. 26, 1543–1556 (1986).
[Crossref] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

P. L. Walraven, “A closer look at the tritanopic confusion point,” Vision Res. 14, 1339–1343 (1974).
[Crossref] [PubMed]

J. J. Vos, O. Estévez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 936–943 (1990).
[Crossref]

E. N. Pugh, C. Sigel, “Evaluation of the candidacy of the π-mechanisms of Stiles for color-matching fundamentals,” Vision Res. 18, 317–330 (1978).
[Crossref]

L. E. Marks, “Blue-sensitive cones can mediate brightness,” Vision Res. 14, 1493–1494 (1974).
[Crossref]

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in the human eye,” Vision Res. 11, 1057–1064 (1971).
[Crossref] [PubMed]

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[Crossref] [PubMed]

K. H. Ruddock, “The effect of age upon colour vision II. Changes with age in light transmission of the ocular media,” Vision Res. 5, 47–58 (1965).
[Crossref] [PubMed]

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism in normal human colour vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[Crossref]

M. Lutze, N. J. Cox, V. C. Smith, J. Pokorny, “Genetic studies of variation in Rayleigh and photometric matches in normal trichromats,” Vision Res. 30, 149–162 (1990).
[Crossref] [PubMed]

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filter spectra,” Vision Res. 22, 635–643 (1982).
[Crossref]

P. Whittle, “The brightness of coloured flashes on backgrounds of various colours and luminances,” Vision Res. 13, 621–638 (1973).
[Crossref] [PubMed]

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold,” Vision Res. 8, 913–928 (1968).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Psychophysical estimates of optical density in human cones,” Vision Res. 13, 1199–1202 (1973).
[Crossref] [PubMed]

M. Alpern, H. Kitahara, G. H. Fielder, “The change in color matches with retinal angle of incidence of the colorimeter beams,” Vision Res. 27, 1763–1778 (1987).
[Crossref] [PubMed]

H. R. Blackwell, O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[Crossref]

G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1982).
[Crossref]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 20, 779–788 (1979).
[Crossref]

Z. Tech. Phys. (1)

R. Luther, “Aus dem Gebiet der Farbreizmetrik,”Z. Tech. Phys. 8, 540–558 (1927).

Other (29)

E. F. MacNichol, J. S. Levine, R. J. W. Mansfield, L. E. Lipetz, B. A. Collins, “Microspectrophotometry of visual pigments inprimate photoreceptors,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 13–38.

A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977), Vol. 2B.

W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978).

S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).

W. S. Stiles, “The average colour matching functions for a large matching field,” in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 1, pp. 209–247.

V. C. Smith, J. Pokorny, Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

P. L. Walraven, “The Stiles–Crawford effects in normal and anomalous color vision,” in Opthalmic and Visual Optics, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 118–121.

G. H. Jacobs, “Variations in colour vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (CRC, Boca Raton, Fla., 1991), pp. 1127–1144.

A. W. Snyder, “Photoreceptor optics—theoretical principles,” in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 38–55.
[Crossref]

B. R. Horowitz, “Theoretical considerations of the retinal receptor as a waveguide,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 217–300.

J. K. Bowmaker, “Cone visual pigments in monkeys and humans,” in Advances in Photoreception: Proceedings of a Symposium on the Frontiers of Visual Science, National Research Council Committee on Vision, ed. (National Academy Press, Washington, D.C., 1990).

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Micro-spectrophotometric results for Old and New World primates,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

B. L. Bastian, “Individual differences among the photo-pigments of protan observers,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1976).

D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.

M. Alpern, “Variation in the visual pigments of human dichromats and normal human trichromats,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium, National Research Council Committee on Vision, ed. (National Academy Press, Washington, D.C., 1987).

T. Young, Lectures on Natural Philosophy (Johnson, London, 1807), Vol. II.

J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries” (Institute for Perception, Netherlands Organization for Applied Scientific Research, Soesterberg, The Netherlands, 1972).

R. J. W. Mansfield, “Primate photopigments and cone mechanisms,” in The Visual System, A. Fein, J. S. Levine, eds. (Liss, New York, 1985).

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

F. Viénot, “Can variation in macular pigment account for the variation of colour matches with retinal position?” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 107–116.

J. Neitz, G. H. Jacobs, “Polymorphism of cone pigments among color normals: evidence from color matching,” in Colour Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 27–34.
[Crossref]

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the Twelfth Session of the CIE, Stockholm, Technical Committee No. 7 (Bureau Central de la CIE, Paris, 1951).

A. Stockman, “The spectral sensitivities of the middle- and long-wavelength cone mechanisms,” Ph.D. dissertation (University of Cambridge, Cambridge, 1983).

F. H. G. Pitt, Characteristics of Dichromatic Vision, Medical Research Council Special Report Series No. 200 (His Majesty’s Stationery Office, London, 1935).

Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, London, 1968).

O. Estévez, “On the fundamental database of normal and dichromatic color vision,” Ph.D. dissertation (Amsterdam University, Amsterdam, 1979).

CIE, Commission Internationale de l’Eclairage Proceedings, 1931 (Cambridge U. Press, Cambridge, 1932).

CIE, Commission Internationale de l’Eclairage Proceedings, 1924 (Cambridge U. Press, Cambridge, 1926).

H. G. Sperling, “An experimental investigation of the relationship between colour mixture and luminance efficiency,” in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 1, pp. 249–277.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Cone isolation for nine male color normals (open symbols), two female color normals (dotted symbols), and two male protanopei s (filled symbols). (a) M-cone isolation: The difference in log10 sensitivity for detecting 545- and 668-nm, 17-Hz flicker following an exchange of background from 485 to 678 nm plotted as a function of the 678-nm background luminance. The horizontal line is the Smith–Pokorny M-cone sensitivity. (b) L- cone isolation: The difference in log10 sensitivity for detecting 638- and 170-nm, 17-Hz flicker following an exchange of background from 678 to 485 nm plotted as a function of the 485-nm background luminance. The horizontal dotted line at +0.38 is the mean 638–470 nm sensitivity difference obtained in Sub- section 3.B (see Table 1 below). The data for each subject have been vertically shifted to align each subject’s asymptotic 638–470-nm spectral sensitivity with that value. (In contrast, the average 638–470-nm sensitivity difference under M-cone isolation conditions was −0.86 log10 unit.)

Fig. 2
Fig. 2

Average 17-Hz flicker-detection spectral sensitivities under (a) M-cone or (b) L-cone isolation conditions, adjusted to a typical peak macular pigment density of 0.35 (filled circles). The error bars are ±1 standard deviation across subjects. The upper comparison in each panel is with the CIEJudd-based cone fundamentals of Smith and Pokorny6 (solid curves) and of Vos and Walraven55 (dashed curves); the lower comparison is with the Stiles–Burch1955-based cone fundamentals of Vos et al.57 (soild curves) and Estévezr58 (dashed curves).

Fig. 3
Fig. 3

(a) Best-fitting linear combinations of the CIEJudd x ¯ , y ¯, and z ¯ 2° CMF’s (continuous curves) that describe the adjusted data of Fig. 2 (small filled symbols; large open symbols are data before adjustment). (b) Logarithmic differences between the best-fitting linear combinations of x ¯ , y ¯, and z ¯ and our M-cone (dotted squares) or L-cone (dotted circles) data with (A) no macular pigment adjustments, (B) data adjusted to a peak macular density of 0.35; and (C) data adjusted to a peak macular density of 0.50.

Fig. 4
Fig. 4

(a) Best–fitting linear combinations of the Stiles–Burch1955 r ¯ , g ¯, and b ¯ 2° CMF’s (continuous curves) that describe the adjusted data of Fig. 2 (filled symbols). The open symbols are the data before adjustment. (b) Logarithmic differences between the best-fitting linear combinations of r ¯ , g ¯, and b ¯ and M-cone (dotted squares) or L-cone (dotted circles) data with (A) no macular pigment adjustments, (B) data adjusted to a peak macular density of 0.35, and (C) data adjusted to a peak macular density of 0.50.

Fig. 5
Fig. 5

Comparisons of the CIEJudd-based cone fundamentals of Vos and Walraven55 (short-dashed curves), Smith and Pokorny6 (long-dashed curves), and the present study (solid curves; column B of Table 2) with the dichromat data of Pitt69 (squares) Hecht70 (triangles), Willmer71 (diamonds), Hsia and Graham72 (circles), and Smith and Pokorny6 (inverted triangles). The large dotted circles are the mean protanopic and deuteranopic data from the present study. (a) M-cone fundamentals and protanopes, (b) L-cone fundamentals and deuteranopes.

Fig. 6
Fig. 6

Comparison of Stiles–Burch1955-based cone fundamentals of Estdvez58 (short-dashed curves), Vos et al.57 (long-dashed curves), and the present study (solid curves; column B of Table 3) with the dichromat data. Other details as for Fig. 5.

Fig. 7
Fig. 7

Comparison of Wright’s76 tritanopic gλ coefficients (solid curves) and predictions from (a) the CIEJudd-based M- and L-cone fundamentals of Vos and Walraven55 (open squares), Smith and Pokorny6 (open diamonds), and the initial estimate from the present study [open circles; column (B) of Table 2] with (b) the Stiles–Burch1955-based cone fundamentals of Estévez58 (open squares), Vos et al.57 (open diamonds), and the initial estimate from the present study [open circles; column (B) of Table 3]. The filled circles show the effects of (a) modifying the CIEJudd cone fundamentals presented in column (B) of Table 2 by varying the z ¯ coefficient and (b) modifying the Stiles–Burch1955 cone fundamentals presented in column (B) of Table 3 by varying the b ¯ coefficient to best describe the Wright coefficients (see text for details).

Fig. 8
Fig. 8

Comparison of final Stiles–Burch1955-based cone fundamentals (solid curves; columns 2, 3, and 4 of Table 8 below) with protanopic and deuteranopic spectral sensitivities from Smith and Pokorny6 (triangles) and from the present study (dotted circles).

Fig. 9
Fig. 9

(a) Log10 ratios of proposed Stiles–Burch1955-based cone fundamentals (columns 2, 3, and 4 of Table 8 below) to the linear combination of the CIEJudd 2° CMF’s that best describes them, either with no macular and lens adjustments (dashed curves) or with best-fitting macular and lens adjustments (circles). Upper graph, M-cone fundamentals; lower graph, L-cone fundamentals. (b) Log10 ratios of proposed Stiles–Burch1955-based cone fundamentals to the linear combination of the CIE1931 2° CMF’s that best describes them. Other details as in (a). (c) Log10 ratios of proposed Stiles–Burch1955-based cone fundamentals to the linear combination of the CIE1964 10° CMF’s that best describes them, with no macular and lens adjustments (dashed curves), with best-fitting macular and lens adjustments (solid curves), or with best-fitting macular, lens, and photopigment density adjustments (circles).

Fig. 10
Fig. 10

Comparisons among S-cone spectral-sensitivity estimates. Psychophysical data: Stiles’s π3 field sensitivity (filled circles) from Table 2(7.4.3) of Ref. 48 and unpublished mean 5-Hz test sensitivities for two of our subjects (dotted circles); details as for subject AS, 5-Hz data, Fig. 1 of Stockman et al.47 S-cone fundamentals: Stiles–Burch1955-based estimate (long-dashed curve) of Vos et al.57 CIEJudd-based estimate (short-dashed curve) of Vos and Walraven55 and of Smith and Pokorny6; and linear combination of the Stiles–Burch1955, g ¯ and b ¯ 2° CMF’s (solid curve) that best fits π3 up to 565 nm; beyond 565 nm (dashed extension of solid curve) the CMF’s do not define S-cone sensitivity with useful precision. Monkey data: suction electrode recordings (diamonds) from Baylor et al.,15 shifted 400 cm−1 to shorter wavelengths and corrected for macular and lens densities and for axial photopigment density (see text).

Fig. 11
Fig. 11

Comparisons of proposed Stiles–Burch1955-based cone fundamentals (solid curves, from Appendix A) and MSP and suction electrode spectra. (a) Human MSP data (circles) from Table 2 of Dartnall et al.12 and rhesus monkey MSP data (open squares) from Bowmaker et al.,86 both adjusted to a peak photopigment density of 0.40 and corrected for typical lens and macular pigmentation (see text). (b) Cynomolgus monkey suction electrode spectra from Baylor et al.,15 adjusted to a peak photopigment density of 0.40 (open squares) or 0.27 (filled squares), and corrected for typical lens and macular densities.

Fig. 12
Fig. 12

S-cone (triangles), M-cone (squares), and L-cone (circles) action spectra derived from the cone fundamentals based on the Stiles–Burch1955 2° CMF’s (Table 8 below) by assuming 1.16 times the van Norren–Vos (open pupil) lens pigment template, 0.70 times the Wyszecki–Stiles macular pigment template, and a photopigment density of 0.40.

Fig. 13
Fig. 13

S-cone (triangles), M-cone (squares), and L-cone (circles) action spectra derived from the cone fundamentals based on the CIE1964 10° CMF’s [column (C) of Table 6] by assuming 1.28 times the van Norren–Vos (open pupil) lens pigment template, 0.28 times the Wyszecki–Stiles macular pigment template, and a photopigment density of 0.30.

Fig. 14
Fig. 14

Cone action spectra derived from the cone fundamentals based on the Stiles–Burch1955 2° CMF’s (symbols) and CIE1964 10° CMF’s (curves). Details as in Figs. 12 and 13, except that Adjustment A (see Fig. 16 below) was made to the van Norren–Vos lens pigment template.

Fig. 15
Fig. 15

Cone action spectra derived from the cone fundamentals based on the CIE1964 10° CMF’s (symbols). Details as in Fig. 13, except that Adjustment B (see Fig. 16 below) was made to the van Norren–Vos lens pigment template. The S-cone pigment curve is shown shifted laterally to align with the M- and L-cone curves (solid curves).

Fig. 16
Fig. 16

Upper panel, Comparison of the Wyszecki–Stiles lens pigment template (solid curve), the van Norren–Vos template (open circles), and two adjustments to the van Norren–Vos template. Lower panel, Comparison of adjustments to the van Norren–Vos lens pigment template. Both panels: Dashed curve, Adjustment A; filled circles, Adjustment B. All templates shapes are for a small pupil.

Fig. 17
Fig. 17

Upper panel, Comparison of the CIEjudd-based 2° cone fundamentals of Smith and Pokorny6 (curves) and the proposed fundamentals based on the Stiles–Burchig1955 2° CMF’s (circles) given in columns 2, 3, and 4 of Table 8 below. Lower panel, Differences between the M-cone (dashed curves) and the L-cone (dotted curve) fundamentals.

Tables (8)

Tables Icon

Table 1 Means and Standard Deviations of the M- and L-Cone Spectral Sensitivities Obtained with the Exchange Procedure

Tables Icon

Table 2 Linear Combinations of the CIEJudd x ¯ , y ¯, and z ¯ 2° CMF’s Best Fitting Our Dataa

Tables Icon

Table 3 Linear Combinations of the Stiles–Burch1955 r ¯ , g ¯, and b ¯ 2° CMF’s Best Fitting Our Dataa

Tables Icon

Table 4 Linear Combinations of the CIEJudd x ¯ , y ¯, and z ¯ 2° CMF’s That Best Fit the Proposed Stiles–Burch1955-Based Estimates of the M- and L-Cone Sensitivities (Appendix A)a

Tables Icon

Table 5 Linear Combinations of the CIE1931 x ¯ , y ¯, and z ¯ 2° CMF’s That Best Fit the Proposed Stiles–Burch1955 2°-Based Estimates of the M- and L-Cone Sensitivities (Appendix A)a

Tables Icon

Table 6 Linear Combinations of the CIE1964 x ¯ 10 , y ¯ 10, and z ¯ 10 10° CMF’s That Best Fit the Proposed Stiles–Burch1955 2°-Based Estimates of the M- and L-Cone Sensitivities (Appendix A)a

Tables Icon

Table 7 Proposed Lens Pigment Densities for a Standard Observer with a Completely Open Pupila

Tables Icon

Table 8 Proposed 2° Cone Fundamentals Based on the Stiles–Burch1955 2° CMF’s or on the CIE1964 10° CMF’s

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J λ = 1 - 10 - D A λ .
L λ = 0.214808 r ¯ + 0.751035 g ¯ + 0.045156 b ¯ , M λ = 0.022882 r ¯ + 0.940534 g ¯ + 0.076827 b ¯ , S λ = 0.000000 r ¯ + 0.016500 g ¯ + 0.999989 b ¯             ( λ 525 nm ) .
log 10 S λ = 10 , 402.1 / λ - 21.549 ,
L λ = 0.236157 x ¯ 10 + 0.826427 y ¯ 10 - 0.045710 z ¯ 10 , M λ = - 0.431117 x ¯ 10 + 1.206922 y ¯ 10 + 0.090020 z ¯ 10 , S λ = 0.040557 x ¯ 10 - 0.019683 y ¯ 10 + 0.486195 z ¯ 10             ( λ 520 nm ) .
log 10 S λ = 10 , 402.1 / λ - 21.7185.

Metrics