Abstract

In near-field optical microscopy two kinds of probe are used: a dielectric tip and a small-aperture tip. The purpose of this paper is to compare theoretical images of the same sample obtained with these two probes. We describe the use of a scanning tunneling optical microscope when the sample is a transparent dielectric rough surface illuminated by total internal reflection. The dielectric tip is modeled as a small scattering dipolar center. The intensity detected by the small-aperture probe is calculated with use of the diffraction theory of Bethe [ Phys. Rev. 66, 163 ( 1944)] and Bouwkamp [ Rep. Phys. 27, 35 ( 1954)]. It is shown that the two probes do not detect the same information: The dielectric tip picks up the square modulus of the electric near field. The small-aperture probe is sensitive to both the electric and the magnetic fields. The models are used for calculating and comparing images of a periodic grating and of a two-dimensional object (a letter) that are smaller than the wavelength. The images are quite different, and polarization of the incident light is an important parameter for scanning tunneling optical microscope images, with different behavior for the two tips.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principle of Optics (Pergamon, New York, 1970).
  2. E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).
  3. D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds. (Academic, London, 1990), pp. 243–312.
  4. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  5. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
    [CrossRef] [PubMed]
  6. R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  7. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]
  8. F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
    [CrossRef]
  9. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  10. D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,”J. Vac. Sci. Technol. B 10, 1–3 (1992).
    [CrossRef]
  11. D. Van Labeke, D. Barchiesi, “Theoretical problems in scanning near-field optical microscopy,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).
  12. W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,”J. Vac. Sci. Technol. B 9, 510–513 (1991).
    [CrossRef]
  13. A. Dereux, D. W. Pohl, “The 90° prism edge as a model SNOM probe; near-field, photon tunneling, and far-field properties,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).
  14. C. Girard, M. Spajer, “Model for reflection near-field optical microscopy,” Appl. Opt. 29, 3726–3733 (1990).
    [CrossRef] [PubMed]
  15. C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B 42, 9340–9349 (1990).
    [CrossRef]
  16. C. Girard, X. Bouju, “Coupled electromagnetic modes between a corrugated surface and a thin probe tip,”J. Chem. Phys. 95, 2056–2064 (1991).
    [CrossRef]
  17. D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
    [CrossRef]
  18. D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. (to be published).
  19. D. Barchiesi, “Modélisation des microscopes optiques en champ proche: STOM–SNOM. Optimisation et spectroscopie,” Ph.D. dissertation (Université de Franche-Comté, Besançon, France, 1993).
  20. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  21. C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
    [CrossRef]
  22. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  23. D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, Vol. XXI, E. Wolf, ed. (Elsevier, Amsterdam, 1984).
    [CrossRef]
  24. J. M. Soto-Crespo, M. Nieto-Vesperinas, “Electromagnetic scattering from very rough random surfaces and deep reflection gratings,” J. Opt. Soc. Am. A 6, 367–384 (1989).
    [CrossRef]
  25. J. M. Elson, “Light scattering from semi-infinite media for non-normal incidence,” Phys. Rev. B 12, 2541–2542 (1975).
    [CrossRef]
  26. F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
    [CrossRef]
  27. G. S. Agarwal, “Interaction of electromagnetic waves at rough dielectric surfaces,” Phys. Rev. B 15, 2371–2383 (1977).
    [CrossRef]
  28. J. J. Greffet, “Scattering of electromagnetic waves by rough dielectric surfaces,” Phys. Rev. B 37, 6436–6441 (1988).
    [CrossRef]
  29. L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample–tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
    [CrossRef]
  30. J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
    [CrossRef]
  31. W. Sachs, C. Noguera, “Generalized expression for the tunneling current in scanning tunneling microscopy,” Phys. Rev. B 43, 11612–11622 (1991).
    [CrossRef]
  32. C. Girard, D. Van Labeke, J. M. Vigoureux, “Van der Waals force between a spherical tip and a solid surface,” Phys. Rev. B 40, 12133–12139 (1989).
    [CrossRef]
  33. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  34. D. M. Wood, N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).
    [CrossRef]
  35. S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,”J. Chem. Phys. 70, 1602–1613 (1979).
    [CrossRef]
  36. E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
    [CrossRef]
  37. E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
    [CrossRef] [PubMed]
  38. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A 4, 1970–1983 (1987).
    [CrossRef]
  39. Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577 (1986).
    [CrossRef]
  40. A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
    [CrossRef]
  41. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 9.
  42. A. Jalocha, S. Leblanc, M. Spajer, “Etudes des capteurs utilisés en microscopie tunnel optique,” in Conference Opto 90 (ESI, Paris, 1990).

1992 (3)

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,”J. Vac. Sci. Technol. B 10, 1–3 (1992).
[CrossRef]

D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
[CrossRef]

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

1991 (6)

W. Sachs, C. Noguera, “Generalized expression for the tunneling current in scanning tunneling microscopy,” Phys. Rev. B 43, 11612–11622 (1991).
[CrossRef]

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample–tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

C. Girard, X. Bouju, “Coupled electromagnetic modes between a corrugated surface and a thin probe tip,”J. Chem. Phys. 95, 2056–2064 (1991).
[CrossRef]

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,”J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

1990 (2)

C. Girard, M. Spajer, “Model for reflection near-field optical microscopy,” Appl. Opt. 29, 3726–3733 (1990).
[CrossRef] [PubMed]

C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B 42, 9340–9349 (1990).
[CrossRef]

1989 (4)

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

J. M. Soto-Crespo, M. Nieto-Vesperinas, “Electromagnetic scattering from very rough random surfaces and deep reflection gratings,” J. Opt. Soc. Am. A 6, 367–384 (1989).
[CrossRef]

C. Girard, D. Van Labeke, J. M. Vigoureux, “Van der Waals force between a spherical tip and a solid surface,” Phys. Rev. B 40, 12133–12139 (1989).
[CrossRef]

1988 (1)

J. J. Greffet, “Scattering of electromagnetic waves by rough dielectric surfaces,” Phys. Rev. B 37, 6436–6441 (1988).
[CrossRef]

1987 (2)

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A 4, 1970–1983 (1987).
[CrossRef]

1986 (3)

Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

1984 (1)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

1982 (1)

D. M. Wood, N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).
[CrossRef]

1979 (1)

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,”J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

1977 (2)

F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
[CrossRef]

G. S. Agarwal, “Interaction of electromagnetic waves at rough dielectric surfaces,” Phys. Rev. B 15, 2371–2383 (1977).
[CrossRef]

1975 (1)

J. M. Elson, “Light scattering from semi-infinite media for non-normal incidence,” Phys. Rev. B 12, 2541–2542 (1975).
[CrossRef]

1954 (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

1928 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Agarwal, G. S.

G. S. Agarwal, “Interaction of electromagnetic waves at rough dielectric surfaces,” Phys. Rev. B 15, 2371–2383 (1977).
[CrossRef]

Ashcroft, N. W.

D. M. Wood, N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).
[CrossRef]

Bainier, C.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,”J. Vac. Sci. Technol. B 10, 1–3 (1992).
[CrossRef]

Barchiesi, D.

D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
[CrossRef]

D. Van Labeke, D. Barchiesi, “Theoretical problems in scanning near-field optical microscopy,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. (to be published).

D. Barchiesi, “Modélisation des microscopes optiques en champ proche: STOM–SNOM. Optimisation et spectroscopie,” Ph.D. dissertation (Université de Franche-Comté, Besançon, France, 1993).

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Born, M.

M. Born, E. Wolf, Principle of Optics (Pergamon, New York, 1970).

Bouju, X.

C. Girard, X. Bouju, “Coupled electromagnetic modes between a corrugated surface and a thin probe tip,”J. Chem. Phys. 95, 2056–2064 (1991).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
[CrossRef]

Celli, V.

F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
[CrossRef]

Cites, J.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Courjon, D.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,”J. Vac. Sci. Technol. B 10, 1–3 (1992).
[CrossRef]

C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B 42, 9340–9349 (1990).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

de Fornel, F.

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample–tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Denk, W.

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,”J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Dereux, A.

A. Dereux, D. W. Pohl, “The 90° prism edge as a model SNOM probe; near-field, photon tunneling, and far-field properties,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).

Efrima, S.

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,”J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

Elson, J. M.

J. M. Elson, “Light scattering from semi-infinite media for non-normal incidence,” Phys. Rev. B 12, 2541–2542 (1975).
[CrossRef]

Ferrel, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Ferrell, T. L.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Girard, C.

C. Girard, X. Bouju, “Coupled electromagnetic modes between a corrugated surface and a thin probe tip,”J. Chem. Phys. 95, 2056–2064 (1991).
[CrossRef]

C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B 42, 9340–9349 (1990).
[CrossRef]

C. Girard, M. Spajer, “Model for reflection near-field optical microscopy,” Appl. Opt. 29, 3726–3733 (1990).
[CrossRef] [PubMed]

C. Girard, D. Van Labeke, J. M. Vigoureux, “Van der Waals force between a spherical tip and a solid surface,” Phys. Rev. B 40, 12133–12139 (1989).
[CrossRef]

Goudonnet, J. P.

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample–tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Greffet, J. J.

J. J. Greffet, “Scattering of electromagnetic waves by rough dielectric surfaces,” Phys. Rev. B 37, 6436–6441 (1988).
[CrossRef]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hill, N. R.

F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Isaacson, M.

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 9.

Jalocha, A.

A. Jalocha, S. Leblanc, M. Spajer, “Etudes des capteurs utilisés en microscopie tunnel optique,” in Conference Opto 90 (ESI, Paris, 1990).

Kostelar, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Leblanc, S.

A. Jalocha, S. Leblanc, M. Spajer, “Etudes des capteurs utilisés en microscopie tunnel optique,” in Conference Opto 90 (ESI, Paris, 1990).

Lesniewska, E.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Leviatan, Y.

Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

Lewis, A.

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

Marvin, A.

F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
[CrossRef]

Maystre, D.

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, Vol. XXI, E. Wolf, ed. (Elsevier, Amsterdam, 1984).
[CrossRef]

Metiu, H.

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,”J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

Nieto-Vesperinas, M.

Noguera, C.

W. Sachs, C. Noguera, “Generalized expression for the tunneling current in scanning tunneling microscopy,” Phys. Rev. B 43, 11612–11622 (1991).
[CrossRef]

Pohl, D. W.

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,”J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds. (Academic, London, 1990), pp. 243–312.

A. Dereux, D. W. Pohl, “The 90° prism edge as a model SNOM probe; near-field, photon tunneling, and far-field properties,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).

Reddick, R. C.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Roberts, A.

Sachs, W.

W. Sachs, C. Noguera, “Generalized expression for the tunneling current in scanning tunneling microscopy,” Phys. Rev. B 43, 11612–11622 (1991).
[CrossRef]

Salomon, L.

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample–tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Sanghadasa, M. F. M.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Sarayeddine, K.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Soto-Crespo, J. M.

Spajer, M.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,”J. Vac. Sci. Technol. B 10, 1–3 (1992).
[CrossRef]

C. Girard, M. Spajer, “Model for reflection near-field optical microscopy,” Appl. Opt. 29, 3726–3733 (1990).
[CrossRef] [PubMed]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

A. Jalocha, S. Leblanc, M. Spajer, “Etudes des capteurs utilisés en microscopie tunnel optique,” in Conference Opto 90 (ESI, Paris, 1990).

Sung, C. C.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Synge, E. H.

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Toigo, F.

F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Van Labeke, D.

D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
[CrossRef]

C. Girard, D. Van Labeke, J. M. Vigoureux, “Van der Waals force between a spherical tip and a solid surface,” Phys. Rev. B 40, 12133–12139 (1989).
[CrossRef]

D. Van Labeke, D. Barchiesi, “Theoretical problems in scanning near-field optical microscopy,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. (to be published).

Vigoureux, J. M.

C. Girard, D. Van Labeke, J. M. Vigoureux, “Van der Waals force between a spherical tip and a solid surface,” Phys. Rev. B 40, 12133–12139 (1989).
[CrossRef]

Warmack, R. J.

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principle of Optics (Pergamon, New York, 1970).

Wood, D. M.

D. M. Wood, N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Biophys. J. (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy,” Biophys. J. 49, 269–279 (1986).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

J. Cites, M. F. M. Sanghadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992).
[CrossRef]

Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

A. Roberts, “Small hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
[CrossRef]

J. Chem. Phys. (2)

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,”J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

C. Girard, X. Bouju, “Coupled electromagnetic modes between a corrugated surface and a thin probe tip,”J. Chem. Phys. 95, 2056–2064 (1991).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Vac. Sci. Technol. B (2)

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,”J. Vac. Sci. Technol. B 10, 1–3 (1992).
[CrossRef]

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,”J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Philos. Mag. (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (9)

J. M. Elson, “Light scattering from semi-infinite media for non-normal incidence,” Phys. Rev. B 12, 2541–2542 (1975).
[CrossRef]

F. Toigo, A. Marvin, V. Celli, N. R. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 13, 5618–5626 (1977).
[CrossRef]

G. S. Agarwal, “Interaction of electromagnetic waves at rough dielectric surfaces,” Phys. Rev. B 15, 2371–2383 (1977).
[CrossRef]

J. J. Greffet, “Scattering of electromagnetic waves by rough dielectric surfaces,” Phys. Rev. B 37, 6436–6441 (1988).
[CrossRef]

D. M. Wood, N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).
[CrossRef]

C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B 42, 9340–9349 (1990).
[CrossRef]

W. Sachs, C. Noguera, “Generalized expression for the tunneling current in scanning tunneling microscopy,” Phys. Rev. B 43, 11612–11622 (1991).
[CrossRef]

C. Girard, D. Van Labeke, J. M. Vigoureux, “Van der Waals force between a spherical tip and a solid surface,” Phys. Rev. B 40, 12133–12139 (1989).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrel, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Rep. Phys. (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Phys. 27, 35–100 (1954).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelar, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Other (12)

M. Born, E. Wolf, Principle of Optics (Pergamon, New York, 1970).

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds. (Academic, London, 1990), pp. 243–312.

A. Dereux, D. W. Pohl, “The 90° prism edge as a model SNOM probe; near-field, photon tunneling, and far-field properties,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).

D. Van Labeke, D. Barchiesi, “Theoretical problems in scanning near-field optical microscopy,” in NATO Advanced Research Workshop on Near-Field Optics—SNOM, D. W. Pohl, ed. (Kluwer, Dordrecht, The Netherlands, to be published).

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. (to be published).

D. Barchiesi, “Modélisation des microscopes optiques en champ proche: STOM–SNOM. Optimisation et spectroscopie,” Ph.D. dissertation (Université de Franche-Comté, Besançon, France, 1993).

R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[CrossRef]

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, Vol. XXI, E. Wolf, ed. (Elsevier, Amsterdam, 1984).
[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 9.

A. Jalocha, S. Leblanc, M. Spajer, “Etudes des capteurs utilisés en microscopie tunnel optique,” in Conference Opto 90 (ESI, Paris, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of STOM device and parameters of the incident field. The sample (letter E) is in glass of index n1 = 1.5. The pattern is on a square 200 nm on a side and is 10 nm high.

Fig. 2
Fig. 2

Idealized dielectric tip.

Fig. 3
Fig. 3

Idealized small-aperture probe.

Fig. 4
Fig. 4

Intensity maps I(x, d) detected in STOM by a probe that scans parallel to the x axis for various distances d from the top of the grating to the bottom of the tip. The object is a glass grating of index n = 1.5. The profile is rectangular, with period a = 200 nm, width b = a/4, and height h = 10 nm. The grooves are parallel to the y axis. The exciting wavelength is λ = 0.67 μm, and the angle of incidence is beyond the critical angle (i = 45°). The angle of aperture is δ = 20°. All the distances are in nanometers. (a) Dielectric tip of radius R = 20 nm, TE polarization; (b) dielectric tip of radius R = 20 nm, TM polarization; (c) small-aperture probe with R = 20 nm aperture, TE polarization; (d) small-aperture probe with R = 20 nm aperture, TM polarization.

Fig. 5
Fig. 5

SNOM images made with a dielectric tip. The sample is as described in the caption for Fig. 1. The tip radius is R = 20 nm; the tip conical angle is δ = 20°. The distance from the bottom of the tip to the top of the letter is d = 20 nm. The laser wavelength is λ = 670 nm. The angle of incidence is beyond the critical angle (i = 45°). The plane of incidence is the xz plane. (a) TE polarization, (b) TM polarization.

Fig. 6
Fig. 6

SNOM images made with a small-aperture tip. The sample is as described in the caption for Fig. 1. The radius of the aperture is R = 20 nm; the tip angle of acceptance is δ = 20°. The distance between the probe and the top of the letter is d = 20 nm. The laser wavelength is λ = 670 nm. The angle of incidence is beyond the critical angle (i = 45°). The plane of incidence is the xz plane. (a) TE polarization, (b) TM polarization.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

u 0 = ( 2 π / λ ) n 1 sin ( i ) cos ( Ψ ) , v 0 = ( 2 π / λ ) n 1 sin ( i ) sin ( Ψ ) , ( k i ) 2 = ɛ 1 ( 2 π / λ ) 2 .
E i ( x , y , z ) = E i exp ( j k i · r ) ,
E i x = E 0 [ - sin ( ϕ ) cos ( i ) cos ( Ψ ) + cos ( ϕ ) sin ( Ψ ) ] , E i y = - E 0 [ sin ( ϕ ) cos ( i ) sin ( Ψ ) + cos ( ϕ ) cos ( Ψ ) ] , E i z = E 0 sin ( ϕ ) sin ( i ) .
E t ( x , y , z ) = E t exp ( j k t · r ) ,
k t = ( u 0 , v 0 , w 2 0 ) ,             ( k t ) 2 = ɛ 2 ( 2 π / λ ) 2 .
E t x = 2 w 1 0 w 1 0 + w 2 0 E i x - 2 u 0 w 1 0 ( ɛ 2 - ɛ 1 ) ( w 1 0 + w 2 0 ) ( ɛ 2 w 1 0 + ɛ 1 w 2 0 ) E i z , E t y = 2 w 1 0 w 1 0 + w 2 0 E i y - 2 v 0 w 1 0 ( ɛ 2 - ɛ 1 ) ( w 1 0 + w 2 0 ) ( ɛ 2 w 1 0 + ɛ 1 w 2 0 ) E i z , E t z = 2 ɛ 1 w 1 0 ɛ 2 w 1 0 + ɛ 1 w 2 0 E i z .
E d ( x , y , z ) = - + E d ( u , v ) exp ( j k 2 · r ) d u d v .
B d ( x , y , z ) = - + B d ( u , v ) exp ( j k 2 · r ) d u d v ,
k 2 = ( u , v , w 2 ) ,
( k 2 ) 2 = ɛ 2 ( 2 π / λ ) 2 .
k 1 = ( u , v , w 1 ) ,
( k 1 ) 2 = ɛ 1 ( 2 π / λ ) 2 .
L ( u , v ) = 1 / w 2 .
f ( x , y ) = - + F ( u , v ) exp [ i ( u x + v y ) ] d u d v .
E d x = i ( ɛ 1 - ɛ 2 ) F ( u - u 0 , v - v 0 ) × [ ω 2 / c 2 w 1 + w 2 E t x - u ɛ 2 w 1 + ɛ 1 w 2 × ( u E t x + v E t y + w 2 E t z ) ] , E d y = i ( ɛ 1 - ɛ 2 ) F ( u - u 0 , v - v 0 ) × [ ω 2 / c 2 w 1 + w 2 E t y - v ɛ 2 w 1 + ɛ 1 w 2 × ( u E t x + v E t y + w 2 E t z ) ] , E d z = i ( ɛ 1 - ɛ 2 ) F ( u - u 0 , v - v 0 ) × [ ω 2 / c 2 w 1 + w 2 E t z - w 1 ɛ 2 w 1 + ɛ 1 w 2 × ( u E t x + v E t y + w 2 E t z ) ] .
B t = ( c / ω ) k t E t , B d = ( c / ω ) k 2 E d .
α = ( ɛ - 1 ) ( ɛ + 2 ) R 3 .
α eff = α 1 - i ω G s α ,
( α eff ) = α δ m n / ( 1 - ɛ 1 - 1 ɛ 1 + 1 a m α 8 z 3 ) ,
ɛ 1 - 1 ɛ 1 + 1 α 8 z 3 1 70 ( R z ) 3 ,
ɛ 1 - 1 ɛ 1 + 1 α 8 z 3 1 20 ( R z ) 3 .
d = α E 2 ( x , y , z ) = α [ E t ( x , y , z ) + E d ( x , y , z ) ] .
I d ( x , y , z ) = ( ω 4 / 96 c 3 ) [ ( d x 2 + d y 2 ) × ( 16 - 15 cos δ - cos 3 δ ) + d z 2 ( 16 - 18 cos δ + 2 cos 3 δ ) ] .
μ x = μ y = 0 , μ z = - ( 2 R 3 / 3 π ) E 2 z ( x , y , z ) .
m x = ( 4 R 3 / 3 π ) B 2 x ( x , y , z ) , m y = ( 4 R 3 / 3 π ) B 2 y ( x , y , z ) , m z = 0.
I s h ( x , y , z ) = ( ω 4 / 96 c 3 ) [ ( μ x 2 + μ y 2 + m y 2 + m y 2 ) × ( 16 - 15 cos δ - cos 3 δ ) + ( μ z 2 + m z 2 ) × ( 16 - 18 cos δ + 2 cos 3 δ ) + 6 ( cos 2 δ - 1 ) × ( m x d y * + d y m x * - m y d x * - d x m y * ) ] .

Metrics