Abstract

We examined the limitations imposed by neural factors on spatial contrast sensitivity for both isochromatic and isoluminant gratings. We used two strategies to isolate these neural factors. First, we eliminated the effect of blurring by the dioptrics of the eye by using interference fringes. Second, we corrected our data for additional sensitivity losses up to and including the site of photon absorption by applying an ideal-observer analysis described by Geisler [ J. Opt. Soc. Am. A 1, 775 ( 1984)]. Our measurements indicate that the neural visual system modifies the shape of the contrast-sensitivity functions for both isochromatic and isoluminant stimuli at high spatial frequencies. If we assume that the high-spatial-frequency performance of the neural visual system is determined by a low-pass spatial filter followed by additive noise, then the visual system has a spatial bandwidth 1.8 times lower for isoluminant red–green than for isochromatic stimuli. On the other hand, we find no difference in bandwidth or sensitivity of the neural visual system for isoluminant red–green and S-cone-isolated stimuli.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lu, D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. Vis. Sci. 11, 482–489 (1972).
  2. C. M. M. De Weert, K. J. Sadza, “New data concerning the contribution of colour differences to stereopsis,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 553–562.
  3. D. L. Grinberg, D. R. Williams, “Stereopsis with chromatic signals from the blue-sensitive mechanism,” Vision Res. 25, 531–537 (1985).
    [CrossRef] [PubMed]
  4. H. De Lange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. II. Phase shift in brightness and delay in color perception,”J. Opt. Soc. Am. 48, 784–789 (1958).
    [CrossRef]
  5. J. Krauskopf, D. R. Williams, “Temporal frequency response of chromatic and luminance mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 20, 61 (1981).
  6. V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
    [CrossRef]
  7. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [CrossRef] [PubMed]
  8. D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [CrossRef] [PubMed]
  9. J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
    [CrossRef] [PubMed]
  10. E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
    [CrossRef] [PubMed]
  11. R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 193–207.
    [CrossRef]
  12. B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
    [CrossRef] [PubMed]
  13. M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
    [CrossRef] [PubMed]
  14. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
    [CrossRef] [PubMed]
  15. R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,”J. Opt. Soc. Am. 60, 273–277 (1970).
    [CrossRef] [PubMed]
  16. E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,”J. Opt. Soc. Am. 63, 1173–1174 (1973).
    [CrossRef] [PubMed]
  17. K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  18. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
    [CrossRef] [PubMed]
  19. J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
    [CrossRef] [PubMed]
  20. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984).
    [CrossRef] [PubMed]
  21. W. S. Geisler, K. D. Davila, “Ideal discriminators in spatial vision: two-point stimuli,” J. Opt. Soc. Am. A 2, 1483–1497 (1985).
    [CrossRef] [PubMed]
  22. M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
    [CrossRef] [PubMed]
  23. M. S. Banks, P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,”J. Opt. Soc. Am. 5, 2059–2079 (1988).
    [CrossRef]
  24. L. N. Thibos, A. Bradley, D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30, 2079–2087 (1991).
    [CrossRef] [PubMed]
  25. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
    [PubMed]
  26. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
    [CrossRef]
  27. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,”J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  28. O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).
  29. G. J. C. Van der Horst, M. A. Boumann, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  30. G. J. C. Van der Horst, C. M. M. De Weert, M. A. Boumann, “Transfer of spatial chromaticity-contrast at threshold in the human eye,”J. Opt. Soc. Am. 57, 1260–1266 (1967).
    [CrossRef] [PubMed]
  31. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1116–1121 (1980).
    [CrossRef] [PubMed]
  32. K. T. Mullen, “Colour vision as a postreceptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
    [CrossRef]
  33. S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli:limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
  34. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).
  35. J. M. Enoch, F. L. Tobey, “Waveguide properties of retinal receptors: techniques and observations,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, New York, 1981), pp. 169–218.
    [CrossRef]
  36. D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
    [CrossRef] [PubMed]
  37. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
    [CrossRef] [PubMed]
  38. D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
    [CrossRef] [PubMed]
  39. J. J. Vos, P. L. Walraven, “On the deviation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [CrossRef] [PubMed]
  40. P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
    [CrossRef] [PubMed]
  41. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  42. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  43. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  44. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
    [PubMed]
  45. N. Sekiguchi, “Contrast sensitivity for isoluminant interference fringes in human foveal vision,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1992).
  46. D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
    [CrossRef] [PubMed]
  47. D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.
  48. F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
    [PubMed]
  49. D. H. Kelly, “Effects of sharp edges on the visibility of sinusoidal gratings,”J. Opt. Soc. Am. 60, 98–103 (1970).
    [CrossRef]
  50. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
    [CrossRef] [PubMed]
  51. R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
    [CrossRef] [PubMed]
  52. F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
    [PubMed]
  53. P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,”J. Comp. Neurol. 255, 18–34 (1987).
    [CrossRef] [PubMed]
  54. F. L. Van Nes, M. A. Bouman, “Spatial modulation transfer in the human eye,”J. Opt. Soc. Am. 57, 401–406 (1967).
    [CrossRef]
  55. D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
    [CrossRef] [PubMed]
  56. X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
    [CrossRef] [PubMed]
  57. G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance. Vol. 1. Sensory Processes and Perception. K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 4.1–4.20.
  58. J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
    [CrossRef] [PubMed]
  59. V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
    [CrossRef] [PubMed]
  60. J. M. Findlay, “A spatial integration effect in visual acuity,” Vision Res. 9, 157–166 (1969).
    [CrossRef] [PubMed]
  61. J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
    [CrossRef] [PubMed]
  62. O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
    [CrossRef] [PubMed]
  63. R. L. Savoy, J. J. McCann, “Visibility of low-spatialfrequency sine-wave targets: dependence on number of cycles,”J. Opt. Soc. Am. 65, 343–350 (1975).
    [CrossRef] [PubMed]
  64. E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
    [CrossRef] [PubMed]
  65. J. J. Koenderink, A. J. Van Doorn, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
    [CrossRef] [PubMed]
  66. J. S. Tootle, M. A. Berkley, “Contrast sensitivity for vertically and obliquely oriented gratings as a function of grating area,” Vision Res. 23, 907–910 (1983).
    [CrossRef] [PubMed]
  67. W. H. Miller, G. D. Bernard, “Averaging over the foveal receptor aperture curtails aliasing,” Vision Res. 23, 1365–1369 (1983).
    [CrossRef] [PubMed]
  68. B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
    [CrossRef] [PubMed]
  69. J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus monkey,” Science 221, 382–385 (1983).
    [CrossRef] [PubMed]
  70. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
    [CrossRef] [PubMed]
  71. N. W. Daw, “Visual responses to gradients of varying colour and equal luminance,” Nature (London) 203, 215–216 (1964).
    [CrossRef]
  72. M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 353–367.
    [CrossRef]
  73. A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
    [CrossRef]
  74. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
    [CrossRef] [PubMed]
  75. N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
    [CrossRef] [PubMed]
  76. B. B. Boycott, J. E. Dowling, “Organization of the primate retina: light microscopy,” Philos. Trans. R. Soc. London Ser. B 225, 109–184 (1969).
    [CrossRef]
  77. H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
    [CrossRef]
  78. S. J. Schein, “Anatomy of macaque fovea and spatial densities of neurons in foveal representation,”J. Comp. Neurol. 269, 479–505 (1988).
    [CrossRef] [PubMed]
  79. H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
    [CrossRef]
  80. H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
    [CrossRef] [PubMed]
  81. C. R. Ingling, E. Martinez, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 433–444.
  82. A. M. Rohaly, G. Buchsbaum, “Inference of global spatiochromatic mechanisms from contrast sensitivity functions,” J. Opt. Soc. Am. A 5, 572–576 (1988).
    [CrossRef] [PubMed]
  83. A. M. Rohaly, G. Buchsbaum, “Global spatiochromatic mechanism accounting for luminance variations in contrast sensitivity functions,” J. Opt. Soc. Am. A 6, 312–317 (1989).
    [CrossRef] [PubMed]
  84. D. H. Kelly, “Opponent-color receptive field profiles determined from large-area psychophysical measurements,” J. Opt. Soc. Am. A 6, 1784–1793 (1989).
    [CrossRef] [PubMed]
  85. C. R. Ingling, “Psychophysical correlates of parvo channel function,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 413–424.
    [CrossRef]

1993 (3)

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
[CrossRef]

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

1992 (1)

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

1991 (7)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30, 2079–2087 (1991).
[CrossRef] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a postreceptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef]

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli:limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

1990 (4)

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

1989 (6)

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

A. M. Rohaly, G. Buchsbaum, “Global spatiochromatic mechanism accounting for luminance variations in contrast sensitivity functions,” J. Opt. Soc. Am. A 6, 312–317 (1989).
[CrossRef] [PubMed]

D. H. Kelly, “Opponent-color receptive field profiles determined from large-area psychophysical measurements,” J. Opt. Soc. Am. A 6, 1784–1793 (1989).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
[CrossRef]

1988 (4)

A. M. Rohaly, G. Buchsbaum, “Inference of global spatiochromatic mechanisms from contrast sensitivity functions,” J. Opt. Soc. Am. A 5, 572–576 (1988).
[CrossRef] [PubMed]

S. J. Schein, “Anatomy of macaque fovea and spatial densities of neurons in foveal representation,”J. Comp. Neurol. 269, 479–505 (1988).
[CrossRef] [PubMed]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

M. S. Banks, P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,”J. Opt. Soc. Am. 5, 2059–2079 (1988).
[CrossRef]

1987 (3)

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,”J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

1985 (7)

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
[PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

W. S. Geisler, K. D. Davila, “Ideal discriminators in spatial vision: two-point stimuli,” J. Opt. Soc. Am. A 2, 1483–1497 (1985).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

D. L. Grinberg, D. R. Williams, “Stereopsis with chromatic signals from the blue-sensitive mechanism,” Vision Res. 25, 531–537 (1985).
[CrossRef] [PubMed]

1984 (2)

1983 (4)

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus monkey,” Science 221, 382–385 (1983).
[CrossRef] [PubMed]

J. S. Tootle, M. A. Berkley, “Contrast sensitivity for vertically and obliquely oriented gratings as a function of grating area,” Vision Res. 23, 907–910 (1983).
[CrossRef] [PubMed]

W. H. Miller, G. D. Bernard, “Averaging over the foveal receptor aperture curtails aliasing,” Vision Res. 23, 1365–1369 (1983).
[CrossRef] [PubMed]

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

1981 (4)

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, “Temporal frequency response of chromatic and luminance mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 20, 61 (1981).

1980 (2)

1979 (1)

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[CrossRef] [PubMed]

1978 (3)

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

1977 (2)

1976 (1)

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef] [PubMed]

1975 (2)

R. L. Savoy, J. J. McCann, “Visibility of low-spatialfrequency sine-wave targets: dependence on number of cycles,”J. Opt. Soc. Am. 65, 343–350 (1975).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974 (2)

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

1973 (1)

1972 (2)

C. Lu, D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. Vis. Sci. 11, 482–489 (1972).

D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
[CrossRef] [PubMed]

1971 (1)

J. J. Vos, P. L. Walraven, “On the deviation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

1970 (3)

1969 (4)

B. B. Boycott, J. E. Dowling, “Organization of the primate retina: light microscopy,” Philos. Trans. R. Soc. London Ser. B 225, 109–184 (1969).
[CrossRef]

J. M. Findlay, “A spatial integration effect in visual acuity,” Vision Res. 9, 157–166 (1969).
[CrossRef] [PubMed]

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

G. J. C. Van der Horst, M. A. Boumann, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
[CrossRef] [PubMed]

1967 (3)

1964 (1)

N. W. Daw, “Visual responses to gradients of varying colour and equal luminance,” Nature (London) 203, 215–216 (1964).
[CrossRef]

1958 (2)

Ahnelt, P. K.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,”J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

Aiba, T. S.

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Anderson, S. J.

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli:limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).

Banks, M. S.

M. S. Banks, P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,”J. Opt. Soc. Am. 5, 2059–2079 (1988).
[CrossRef]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

Baylor, D. A.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Bennett, P. J.

M. S. Banks, P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,”J. Opt. Soc. Am. 5, 2059–2079 (1988).
[CrossRef]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

Berkley, M. A.

J. S. Tootle, M. A. Berkley, “Contrast sensitivity for vertically and obliquely oriented gratings as a function of grating area,” Vision Res. 23, 907–910 (1983).
[CrossRef] [PubMed]

Bernard, G. D.

W. H. Miller, G. D. Bernard, “Averaging over the foveal receptor aperture curtails aliasing,” Vision Res. 23, 1365–1369 (1983).
[CrossRef] [PubMed]

Bilsen, F. A.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Bouman, M. A.

Boumann, M. A.

Bovik, A. C.

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

Boycott, B. B.

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
[CrossRef]

B. B. Boycott, J. E. Dowling, “Organization of the primate retina: light microscopy,” Philos. Trans. R. Soc. London Ser. B 225, 109–184 (1969).
[CrossRef]

Boynton, R. M.

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 193–207.
[CrossRef]

Bradley, A.

Brainard, D. H.

Buchsbaum, G.

Campbell, F. W.

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

Carpenter, R. H. S.

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

Cavanagh, P.

Cavonius, C. R.

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef] [PubMed]

R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,”J. Opt. Soc. Am. 60, 273–277 (1970).
[CrossRef] [PubMed]

Chaparro, A.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Chen, B.

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

Cicerone, C. M.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Collier, R.

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

Collier, R. J.

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Davila, K. D.

Daw, N. W.

N. W. Daw, “Visual responses to gradients of varying colour and equal luminance,” Nature (London) 203, 215–216 (1964).
[CrossRef]

De Lange, H.

De Monasterio, F. M.

F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
[PubMed]

De Weert, C. M. M.

G. J. C. Van der Horst, C. M. M. De Weert, M. A. Boumann, “Transfer of spatial chromaticity-contrast at threshold in the human eye,”J. Opt. Soc. Am. 57, 1260–1266 (1967).
[CrossRef] [PubMed]

C. M. M. De Weert, K. J. Sadza, “New data concerning the contribution of colour differences to stereopsis,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 553–562.

Dowling, J. E.

B. B. Boycott, J. E. Dowling, “Organization of the primate retina: light microscopy,” Philos. Trans. R. Soc. London Ser. B 225, 109–184 (1969).
[CrossRef]

Enoch, J. M.

J. M. Enoch, F. L. Tobey, “Waveguide properties of retinal receptors: techniques and observations,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, New York, 1981), pp. 169–218.
[CrossRef]

Eskew, R. T.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Estevez, O.

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef] [PubMed]

Farell, B.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

Favreau, O. E.

Fender, D. H.

C. Lu, D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. Vis. Sci. 11, 482–489 (1972).

Findlay, J. M.

J. M. Findlay, “A spatial integration effect in visual acuity,” Vision Res. 9, 157–166 (1969).
[CrossRef] [PubMed]

Geisler, W. S.

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

W. S. Geisler, K. D. Davila, “Ideal discriminators in spatial vision: two-point stimuli,” J. Opt. Soc. Am. A 2, 1483–1497 (1985).
[CrossRef] [PubMed]

W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984).
[CrossRef] [PubMed]

Graham, N.

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Granger, E. M.

Gregory, R. L.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Grinberg, D. L.

D. L. Grinberg, D. R. Williams, “Stereopsis with chromatic signals from the blue-sensitive mechanism,” Vision Res. 25, 531–537 (1985).
[CrossRef] [PubMed]

Grünert, U.

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
[CrossRef]

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

Hayhoe, M.

M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 353–367.
[CrossRef]

Hayhoe, M. M.

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

Hess, R. F.

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli:limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Heurtley, J. C.

Heuts, M. J. G.

Hilz, R.

Hoekstra, J.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Howell, E. R.

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Howland, B.

Howland, H. C.

Huang, E. P.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Ingling, C. R.

C. R. Ingling, E. Martinez, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 433–444.

C. R. Ingling, “Psychophysical correlates of parvo channel function,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 413–424.
[CrossRef]

Jordan, J. R.

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

Kelly, D. H.

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Koenderink, J. J.

Kolb, H.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,”J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
[CrossRef]

Krauskopf, J.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, “Temporal frequency response of chromatic and luminance mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 20, 61 (1981).

Kronauer, R. E.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Levinson, J. Z.

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

Lindsey, D. T.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Lu, C.

C. Lu, D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. Vis. Sci. 11, 482–489 (1972).

MacLeod, D. I. A.

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

Makous, W.

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

Marc, R. E.

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Martinez, E.

C. R. Ingling, E. Martinez, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 433–444.

McCann, J. J.

McCrane, E. P.

F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
[PubMed]

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Miller, W. H.

W. H. Miller, G. D. Bernard, “Averaging over the foveal receptor aperture curtails aliasing,” Vision Res. 23, 1365–1369 (1983).
[CrossRef] [PubMed]

Morgan, M. J.

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

Mullen, K. T.

K. T. Mullen, “Colour vision as a postreceptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef]

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli:limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).

K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Newlander, J. K.

F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
[PubMed]

Noorlander, C.

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Owens, D. A.

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[CrossRef] [PubMed]

Packer, O.

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

Pflug, R.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,”J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

Pokorny, J.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Ramachandran, V. S.

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

Robson, J. G.

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Rohaly, A. M.

Röhrenbeck, J.

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
[CrossRef]

Rovamo, J.

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[CrossRef] [PubMed]

Sadza, K. J.

C. M. M. De Weert, K. J. Sadza, “New data concerning the contribution of colour differences to stereopsis,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 553–562.

Savoy, R. L.

Schade, O. H.

O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).

Schein, S. J.

S. J. Schein, “Anatomy of macaque fovea and spatial densities of neurons in foveal representation,”J. Comp. Neurol. 269, 479–505 (1988).
[CrossRef] [PubMed]

F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
[PubMed]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Schor, C.

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[CrossRef] [PubMed]

Sekiguchi, N.

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
[CrossRef]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

N. Sekiguchi, “Contrast sensitivity for isoluminant interference fringes in human foveal vision,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1992).

Shevell, S. K.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Smith, V. C.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Sperling, H. G.

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Still, D. L.

Stromeyer, C. F.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Switkes, E.

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[CrossRef] [PubMed]

Tansley, B. W.

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

Teller, D. Y.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Thibos, L. N.

Thompson, B. J.

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

Tobey, F. L.

J. M. Enoch, F. L. Tobey, “Waveguide properties of retinal receptors: techniques and observations,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, New York, 1981), pp. 169–218.
[CrossRef]

Tootle, J. S.

J. S. Tootle, M. A. Berkley, “Contrast sensitivity for vertically and obliquely oriented gratings as a function of grating area,” Vision Res. 23, 907–910 (1983).
[CrossRef] [PubMed]

Tyler, C. W.

Van den Brink, G.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Van der Goot, D. P. J.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Van der Horst, G. J. C.

Van Doorn, A. J.

J. J. Koenderink, A. J. Van Doorn, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
[CrossRef] [PubMed]

Van Nes, F. L.

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Virsu, V.

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, P. L. Walraven, “On the deviation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Walraven, P. L.

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

J. J. Vos, P. L. Walraven, “On the deviation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Wässle, H.

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
[CrossRef]

Wenderoth, P.

M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 353–367.
[CrossRef]

Westheimer, G.

G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance. Vol. 1. Sensory Processes and Perception. K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 4.1–4.20.

Williams, D. R.

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993).
[CrossRef]

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

D. L. Grinberg, D. R. Williams, “Stereopsis with chromatic signals from the blue-sensitive mechanism,” Vision Res. 25, 531–537 (1985).
[CrossRef] [PubMed]

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, “Temporal frequency response of chromatic and luminance mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 20, 61 (1981).

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

Wolfe, J. M.

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Yellott, J. I.

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus monkey,” Science 221, 382–385 (1983).
[CrossRef] [PubMed]

Zhang, X.

Appl. Opt. (1)

Exp. Brain Res. (1)

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

F. M. De Monasterio, E. P. McCrane, J. K. Newlander, S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Vis. Sci. 26, 289–302 (1985).
[PubMed]

C. Lu, D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. Vis. Sci. 11, 482–489 (1972).

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

J. Krauskopf, D. R. Williams, “Temporal frequency response of chromatic and luminance mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 20, 61 (1981).

J. Comp. Neurol. (3)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,”J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,”J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

S. J. Schein, “Anatomy of macaque fovea and spatial densities of neurons in foveal representation,”J. Comp. Neurol. 269, 479–505 (1988).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (11)

F. L. Van Nes, M. A. Bouman, “Spatial modulation transfer in the human eye,”J. Opt. Soc. Am. 57, 401–406 (1967).
[CrossRef]

D. H. Kelly, “Effects of sharp edges on the visibility of sinusoidal gratings,”J. Opt. Soc. Am. 60, 98–103 (1970).
[CrossRef]

R. L. Savoy, J. J. McCann, “Visibility of low-spatialfrequency sine-wave targets: dependence on number of cycles,”J. Opt. Soc. Am. 65, 343–350 (1975).
[CrossRef] [PubMed]

G. J. C. Van der Horst, M. A. Boumann, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
[CrossRef] [PubMed]

G. J. C. Van der Horst, C. M. M. De Weert, M. A. Boumann, “Transfer of spatial chromaticity-contrast at threshold in the human eye,”J. Opt. Soc. Am. 57, 1260–1266 (1967).
[CrossRef] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1116–1121 (1980).
[CrossRef] [PubMed]

M. S. Banks, P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,”J. Opt. Soc. Am. 5, 2059–2079 (1988).
[CrossRef]

H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,”J. Opt. Soc. Am. 67, 1508–1518 (1977).
[CrossRef] [PubMed]

H. De Lange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. II. Phase shift in brightness and delay in color perception,”J. Opt. Soc. Am. 48, 784–789 (1958).
[CrossRef]

R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,”J. Opt. Soc. Am. 60, 273–277 (1970).
[CrossRef] [PubMed]

E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,”J. Opt. Soc. Am. 63, 1173–1174 (1973).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (9)

J. Physiol. (5)

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli:limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

J. Soc. Motion Pict. Telev. Eng. (1)

O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).

Nature (London) (4)

V. S. Ramachandran, R. L. Gregory, “Does colour provide an input to human motion perception?” Nature (London) 275, 55–56 (1978).
[CrossRef]

N. W. Daw, “Visual responses to gradients of varying colour and equal luminance,” Nature (London) 203, 215–216 (1964).
[CrossRef]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature (London) 341, 643–646 (1989).
[CrossRef]

Perception (1)

J. M. Wolfe, D. A. Owens, “Is accommodation colorblind? Focusing chromatic contours,” Perception 10, 53–62 (1981).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B (2)

B. B. Boycott, J. E. Dowling, “Organization of the primate retina: light microscopy,” Philos. Trans. R. Soc. London Ser. B 225, 109–184 (1969).
[CrossRef]

H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
[CrossRef]

Psychol. Rev. (1)

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

Science (3)

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus monkey,” Science 221, 382–385 (1983).
[CrossRef] [PubMed]

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Vision Res. (30)

D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

J. J. Koenderink, A. J. Van Doorn, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
[CrossRef] [PubMed]

J. S. Tootle, M. A. Berkley, “Contrast sensitivity for vertically and obliquely oriented gratings as a function of grating area,” Vision Res. 23, 907–910 (1983).
[CrossRef] [PubMed]

W. H. Miller, G. D. Bernard, “Averaging over the foveal receptor aperture curtails aliasing,” Vision Res. 23, 1365–1369 (1983).
[CrossRef] [PubMed]

B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993).
[CrossRef] [PubMed]

J. M. Findlay, “A spatial integration effect in visual acuity,” Vision Res. 9, 157–166 (1969).
[CrossRef] [PubMed]

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef] [PubMed]

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, C. Schor, “Readily visible changes in color contrast are insufficient to stimulate accommodation,” Vision Res. 30, 1367–1376 (1990).
[CrossRef] [PubMed]

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

D. L. Grinberg, D. R. Williams, “Stereopsis with chromatic signals from the blue-sensitive mechanism,” Vision Res. 25, 531–537 (1985).
[CrossRef] [PubMed]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a postreceptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef]

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

J. J. Vos, P. L. Walraven, “On the deviation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Other (10)

C. R. Ingling, E. Martinez, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 433–444.

C. R. Ingling, “Psychophysical correlates of parvo channel function,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 413–424.
[CrossRef]

C. M. M. De Weert, K. J. Sadza, “New data concerning the contribution of colour differences to stereopsis,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 553–562.

R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 193–207.
[CrossRef]

M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 353–367.
[CrossRef]

D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

N. Sekiguchi, “Contrast sensitivity for isoluminant interference fringes in human foveal vision,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1992).

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

J. M. Enoch, F. L. Tobey, “Waveguide properties of retinal receptors: techniques and observations,” in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, New York, 1981), pp. 169–218.
[CrossRef]

G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance. Vol. 1. Sensory Processes and Perception. K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 4.1–4.20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Structure of our ideal observer. The output of the model visual system is computed by passing the stimulus, degraded by photon noise, through a series of stages. Each stage incorporates one factor known to affect real-observer visual performance.

Fig. 2
Fig. 2

Luminance profile of(a) the isochromatic, (b) the isoluminant red–green, and (c) the S-cone-isolating gratings.

Fig. 3
Fig. 3

Cone mosaic models used in this study: (a) the central 1 deg of monkey fovea, (b) the parafoveal human cone mosaic from Curcio et al.37

Fig. 4
Fig. 4

Ideal observer’s contrast-sensitivity functions at (a) the fovea and (b) the parafovea.

Fig. 5
Fig. 5

Foveal isoluminant and isochromatic contrast sensitivities plotted as a function of retinal illuminance for observer NS. The solid lines represent a slope of 0.5 as predicted by the ideal observer. Each line is shifted vertically by eye to fit the psychophysical data.

Fig. 6
Fig. 6

(a) Parafoveal red–green isoluminant and isochromatic contrast sensitivities plotted as a function of retinal illuminance for observer NS. The solid lines represent a slope of 0.5 as predicted by the ideal observer. (b) S-cone contrast sensitivities plotted as a function of retinal illuminance. The solid lines represent a slope of 0.5 as predicted by the ideal observer. Each line is shifted vertically by eye to fit the psychophysical data.

Fig. 7
Fig. 7

Foveal contrast sensitivity for (a) isochromatic and (b) isoluminant interference fringes as a function of the number of fringe cycles for observer NS and (c) for observer OP. The solid lines have a slope of 1 on a log–log plot that is predicted by the ideal observer.

Fig. 8
Fig. 8

Parafoveal contrast sensitivity for (a) isochromatic and (b) isoluminant interference fringes as a function of the number of fringe cycles for observer NS and (c) for observer OP. The solid lines have a slope of 1 on a log–log plot that is predicted by the ideal observer.

Fig. 9
Fig. 9

Top: Foveal contrast-sensitivity functions for isoluminant and isochromatic interference fringes for three observers. Filled and open arrows represent the foveal resolution limit for the isoluminant and the isochromatic stimuli, respectively. Bottom: The ratio of the ideal to the real observer’s contrast sensitivity for detecting isoluminant (filled circles) and isochromatic (open circles) stimuli.

Fig. 10
Fig. 10

Top: Parafoveal contrast-sensitivity functions for isoluminant and isochromatic interference fringes for two observers. Bottom: The ratio of the ideal to the real observer’s contrast sensitivity for detecting isoluminant (filled circles) and isochromatic (open diamonds) stimuli.

Fig. 11
Fig. 11

Comparison of isoluminant red–green contrast-sensitivity functions with those obtained previously. Filled symbols represent the foveal data from the three observers measured in this study. Open squares and open circles are the data from Mullen17 and Anderson et al.,33 respectively. The data are plotted with the equivalent contrast metric to compensate for the difference in the stimulus conditions.

Fig. 12
Fig. 12

Top: Comparison of the ideal observer’s contrast sensitivity (solid curve) with contrast sensitivities obtained with isochromatic interference fringes.45 Bottom: The ratio of the ideal to the real observer’s contrast sensitivity.

Fig. 13
Fig. 13

Isoluminant contrast sensitivities are shifted laterally by 0.25 log unit (a factor of 1.8) for the best fit of isochromatic contrast sensitivity.

Fig. 14
Fig. 14

Comparison of the size of the neural point spread for chromatic and luminance pathways with those of the point-spread function of the eye’s optics, cone aperture, and cone spacing at the fovea.

Metrics