Abstract

We developed a new apparatus and psychophysical technique to extend isoluminant contrast-sensitivity measurements to high spatial frequencies. The apparatus consists of two identical laser interferometers that are designed to produce phase-locked two-color interference fringes on the retina without the influence of diffraction and most aberrations in the eye. However, even with interferometry, transverse chromatic aberration of the eye can produce a wavelength-dependent phase shift in the interference fringes, which can be exaggerated by head movements. To reduce the effect of head movements, isoluminant red and green interference fringes of equal spatial frequency and orientation were drifted slowly in opposite directions to guarantee a purely isochromatic (in phase) and a purely isoluminant (out of phase) stimulus during each cycle of stimulus presentation. With this technique we found that observers could resolve red and green stripes at spatial frequencies higher than 20 cycles per degree (c/deg) (20–27 c/deg), substantially higher than has previously been reported. This places a lower bound on the sampling density of neurons that mediate color vision. At all spatial frequencies, even those above the isoluminant resolution limit, a relative phase of the red and the green components could be found that obliterated the appearance of luminance modulation at the fringe frequency. Above the resolution limit, red–green-isoluminant interference fringes are seen as spatial noise, which may be chromatic aliasing caused by spatial sampling at some stage in the chromatic pathway.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. H. Schade, “On the quality of color-television images and the perception of color detail,”J. Soc. Motion Picture Telev. Eng. 67, 801–819 (1958).
  2. G. J. C. Van der Horst, C. M. M. De Weert, M. A. Boumann, “Transfer of spatial chromaticity-contrast at threshold in the human eye,”J. Opt. Soc. Am. 57, 1260–1266 (1967).
    [CrossRef] [PubMed]
  3. G. J. C. Van der Horst, M. A. Boumann, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  4. R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,”J. Opt. Soc. Am. 60, 273–277 (1970).
    [CrossRef] [PubMed]
  5. E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,”J. Opt. Soc. Am. 63, 1173–1174 (1973).
    [CrossRef] [PubMed]
  6. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1116–1121 (1980).
    [CrossRef] [PubMed]
  7. K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  8. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
    [CrossRef] [PubMed]
  9. S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
    [PubMed]
  10. Y. Le Grand, “Sur la mesure de l’acuité visuelle au moyen de franges d’interférence,”C. R. Acad. Sci. Paris 200, 490–491.
  11. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
    [PubMed]
  12. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
    [CrossRef] [PubMed]
  13. L. N. Thibos, A. Bradley, D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30, 2079–2087 (1991).
    [CrossRef] [PubMed]
  14. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
    [CrossRef]
  15. S. Mallick, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1978), pp. 81–104.
  16. W. H. Steel, Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, 1983).
  17. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
    [CrossRef] [PubMed]
  18. N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
    [CrossRef] [PubMed]
  19. G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
    [CrossRef] [PubMed]
  20. D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
    [CrossRef] [PubMed]
  21. N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
    [CrossRef] [PubMed]
  22. S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.
  23. K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983).
    [CrossRef] [PubMed]
  24. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
    [CrossRef] [PubMed]
  25. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1966).
  26. X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
    [CrossRef] [PubMed]
  27. F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
    [PubMed]
  28. D. H. Kelly, “Effects of sharp edges on the visibility of sinusoidal gratings,”J. Opt. Soc. Am. 60, 98–103 (1970).
    [CrossRef]
  29. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  30. O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).
  31. O. Packer, D. R. Williams, “Blurring by fixational eye movements,” Vision Res. 32, 1931–1939 (1992).
    [CrossRef] [PubMed]
  32. P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
    [PubMed]
  33. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  34. C. R. Cavonius, A. W. Schumacher, “Human visual acuity measured with colored test objects,” Science 152, 1276–1277 (1966).
    [CrossRef] [PubMed]
  35. D. R. Williams, N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987).
    [CrossRef] [PubMed]
  36. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
    [CrossRef]
  37. D. Brewster, “On the undulations excited in the retina by the action of luminous points and lines,” London Edinburgh Philos. Mag. J. Sci. 1, 169–174 (1832).
  38. J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,”J. Opt. Soc. Am. 54, 1171 (1964).
    [CrossRef]
  39. J. Krauskopf, “On identifying detectors,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 283–295.
    [CrossRef]
  40. J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
    [CrossRef] [PubMed]
  41. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  42. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  43. Y. Le Grand, Form and Space Vision, M. Milldot, G. G. Heath, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.
  44. L. Riggs, J. C. Armington, “Motions of the retinal image during fixation,”J. Opt. Soc. Am. 44, 315–321 (1954).
    [CrossRef] [PubMed]
  45. H. C. Bennet-Clark, “The oculomotor response to small target displacements,” Opt. Acta 11, 301–314 (1964).
    [CrossRef]
  46. R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
    [CrossRef] [PubMed]
  47. M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985).
    [CrossRef] [PubMed]
  48. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
    [PubMed]
  49. P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 31, 187–206 (1990).
    [CrossRef]
  50. A. B. Poirson, B. A. Wandell, “Task-dependent color discrimination,” J. Opt. Soc. Am. A 7, 776–782 (1990).
    [CrossRef] [PubMed]
  51. A. B. Poirson, B. A. Wandell, D. C. Verner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
    [CrossRef] [PubMed]
  52. A. B. Poirson, “Appearance and detection of colored patterns,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).
  53. K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
    [CrossRef] [PubMed]
  54. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [CrossRef]

1993 (1)

1992 (2)

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, “Blurring by fixational eye movements,” Vision Res. 32, 1931–1939 (1992).
[CrossRef] [PubMed]

1991 (5)

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30, 2079–2087 (1991).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
[PubMed]

1990 (4)

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 31, 187–206 (1990).
[CrossRef]

A. B. Poirson, B. A. Wandell, “Task-dependent color discrimination,” J. Opt. Soc. Am. A 7, 776–782 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, D. C. Verner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

1989 (3)

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

1988 (1)

1987 (2)

1985 (5)

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

1984 (1)

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

1983 (2)

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef] [PubMed]

1980 (2)

1979 (1)

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

1973 (3)

R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
[CrossRef] [PubMed]

E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,”J. Opt. Soc. Am. 63, 1173–1174 (1973).
[CrossRef] [PubMed]

G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

1970 (2)

1969 (2)

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

G. J. C. Van der Horst, M. A. Boumann, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
[CrossRef] [PubMed]

1967 (1)

1966 (2)

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1966).

C. R. Cavonius, A. W. Schumacher, “Human visual acuity measured with colored test objects,” Science 152, 1276–1277 (1966).
[CrossRef] [PubMed]

1965 (2)

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

1964 (2)

J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,”J. Opt. Soc. Am. 54, 1171 (1964).
[CrossRef]

H. C. Bennet-Clark, “The oculomotor response to small target displacements,” Opt. Acta 11, 301–314 (1964).
[CrossRef]

1958 (1)

O. H. Schade, “On the quality of color-television images and the perception of color detail,”J. Soc. Motion Picture Telev. Eng. 67, 801–819 (1958).

1954 (1)

1832 (1)

D. Brewster, “On the undulations excited in the retina by the action of luminous points and lines,” London Edinburgh Philos. Mag. J. Sci. 1, 169–174 (1832).

Anderson, S. J.

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
[PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.

Anstis, S. M.

Armington, J. C.

Bennet-Clark, H. C.

H. C. Bennet-Clark, “The oculomotor response to small target displacements,” Opt. Acta 11, 301–314 (1964).
[CrossRef]

Boumann, M. A.

Bradley, A.

Brainard, D.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
[CrossRef]

Brainard, D. H.

Brewster, D.

D. Brewster, “On the undulations excited in the retina by the action of luminous points and lines,” London Edinburgh Philos. Mag. J. Sci. 1, 169–174 (1832).

Burton, G. J.

G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1966).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

Campbell, M. C. W.

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 31, 187–206 (1990).
[CrossRef]

Carpenter, R. H. S.

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

Cavanagh, P.

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.

Cavonius, C. R.

R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,”J. Opt. Soc. Am. 60, 273–277 (1970).
[CrossRef] [PubMed]

C. R. Cavonius, A. W. Schumacher, “Human visual acuity measured with colored test objects,” Science 152, 1276–1277 (1966).
[CrossRef] [PubMed]

Cicerone, C. M.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Cole, G. R.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

Coletta, N. J.

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

D. R. Williams, N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987).
[CrossRef] [PubMed]

De Valois, K. K.

De Weert, C. M. M.

Eizenman, M.

M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985).
[CrossRef] [PubMed]

Frecker, R. C.

M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985).
[CrossRef] [PubMed]

Galvin, S.

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

Granger, E. M.

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1966).

Haake, W.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
[CrossRef]

Haddad, G. M.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
[CrossRef] [PubMed]

Hallett, P. E.

M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985).
[CrossRef] [PubMed]

Hess, R. F.

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
[PubMed]

Heurtley, J. C.

Heuts, M. J. G.

Hilz, R.

Kelly, D. H.

King-Smith, P. E.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

Koenderink, J. J.

Kranda, K.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,”J. Opt. Soc. Am. 54, 1171 (1964).
[CrossRef]

J. Krauskopf, “On identifying detectors,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 283–295.
[CrossRef]

Kronauer, R. E.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

Le Grand, Y.

Y. Le Grand, Form and Space Vision, M. Milldot, G. G. Heath, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.

Y. Le Grand, “Sur la mesure de l’acuité visuelle au moyen de franges d’interférence,”C. R. Acad. Sci. Paris 200, 490–491.

Levinson, J. Z.

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

MacLeod, D. I. A.

Makous, W.

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

Mallick, S.

S. Mallick, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1978), pp. 81–104.

Mather, G.

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

Mullen, K. T.

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
[PubMed]

K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Noorlander, C.

Packer, O.

O. Packer, D. R. Williams, “Blurring by fixational eye movements,” Vision Res. 32, 1931–1939 (1992).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
[CrossRef]

Pelli, D. G.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Poirson, A. B.

Pokorny, J.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Riggs, L.

Schade, O. H.

O. H. Schade, “On the quality of color-television images and the perception of color detail,”J. Soc. Motion Picture Telev. Eng. 67, 801–819 (1958).

Schumacher, A. W.

C. R. Cavonius, A. W. Schumacher, “Human visual acuity measured with colored test objects,” Science 152, 1276–1277 (1966).
[CrossRef] [PubMed]

Sekiguchi, N.

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[CrossRef]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
[CrossRef]

Shevell, S. K.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Simonet, P.

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 31, 187–206 (1990).
[CrossRef]

Skavenski, A. A.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
[CrossRef] [PubMed]

Smith, V. C.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Srebro, R.

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

Steel, W. H.

W. H. Steel, Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, 1983).

Steinman, R. M.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
[CrossRef] [PubMed]

Still, D. L.

Stromeyer, C. F.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

Switkes, E.

Thibos, L. N.

Tiana, C. L. M.

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

Van der Horst, G. J. C.

Verner, D. C.

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Wandell, B. A.

Watson, A. B.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Williams, D. R.

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[CrossRef]

O. Packer, D. R. Williams, “Blurring by fixational eye movements,” Vision Res. 32, 1931–1939 (1992).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

D. R. Williams, N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987).
[CrossRef] [PubMed]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
[CrossRef]

Wyman, D.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
[CrossRef] [PubMed]

Zhang, X.

Appl. Opt. (1)

C. R. Acad. Sci. Paris (1)

Y. Le Grand, “Sur la mesure de l’acuité visuelle au moyen de franges d’interférence,”C. R. Acad. Sci. Paris 200, 490–491.

Invest. Ophthal. Vis. Sci. Suppl. (1)

O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).

Invest. Ophthalmol. Vis. Sci. (2)

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

J. Opt. Soc. Am. (9)

J. Opt. Soc. Am. A (8)

J. Physiol. (5)

F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969).
[PubMed]

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1966).

K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991).
[PubMed]

J. Soc. Motion Picture Telev. Eng. (1)

O. H. Schade, “On the quality of color-television images and the perception of color detail,”J. Soc. Motion Picture Telev. Eng. 67, 801–819 (1958).

London Edinburgh Philos. Mag. J. Sci. (1)

D. Brewster, “On the undulations excited in the retina by the action of luminous points and lines,” London Edinburgh Philos. Mag. J. Sci. 1, 169–174 (1832).

Opt. Acta (1)

H. C. Bennet-Clark, “The oculomotor response to small target displacements,” Opt. Acta 11, 301–314 (1964).
[CrossRef]

Percept. Psychophys. (1)

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Science (3)

C. R. Cavonius, A. W. Schumacher, “Human visual acuity measured with colored test objects,” Science 152, 1276–1277 (1966).
[CrossRef] [PubMed]

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973).
[CrossRef] [PubMed]

Vision Res. (13)

M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 31, 187–206 (1990).
[CrossRef]

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

O. Packer, D. R. Williams, “Blurring by fixational eye movements,” Vision Res. 32, 1931–1939 (1992).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991).
[CrossRef] [PubMed]

Other (7)

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.

S. Mallick, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1978), pp. 81–104.

W. H. Steel, Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, 1983).

Y. Le Grand, Form and Space Vision, M. Milldot, G. G. Heath, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
[CrossRef]

A. B. Poirson, “Appearance and detection of colored patterns,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).

J. Krauskopf, “On identifying detectors,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 283–295.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of one of the two polarization interferometers.

Fig. 2
Fig. 2

Contrast of the interference fringes produced by the two polarization interferometers as a function of the temporal overlap between a pair of pulsed interfering beams. Circles and diamonds represent the results for interferometer A and interferometer B, respectively.

Fig. 3
Fig. 3

Oppositely drifting red–green interference fringes. (a) Red and green fringes drifting in opposite directions at 0.25 Hz, (b) resulting isoluminant and isochromatic contrast modulated sinusoidally at 0.5 Hz.

Fig. 4
Fig. 4

Luminance profile of the red–green stimulus.

Fig. 5
Fig. 5

Results of the validation experiment for observers (a) NS and (b) OP. In both panels, data are plotted in terms of the contrasts of both fringe components, which were equal. Filled symbols, data for isoluminant stimuli; open symbols, data for isochromatic stimuli. Circles, squares, and diamonds represent the data obtained with the drifting technique, with static fringes with the method of adjustment, and with static fringes with the two-alternative forced-choice method, respectively. Error bars show ±1 standard error of the mean.

Fig. 6
Fig. 6

Phase error caused by (a) eye rotation and (b) head translation between 632.8- and 514.5-nm interference fringes.

Fig. 7
Fig. 7

(a) Effect of phase error on isoluminant contrast sensitivity, (b) effect of head translation on isoluminant contrast sensitivity.

Fig. 8
Fig. 8

Effects of isoluminance error on isoluminant contrast sensitivity.

Tables (1)

Tables Icon

Table 1 Results of Foveal Resolution for Isoluminant and Isochromatic Interference Fringes

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

f = π d 180 λ ,
δ = Δ ρ 1 λ 1 - Δ ρ 1 λ 2 ,
R = ( R L 2 + R C 2 ) 1 / 2 1.
I R ( x ) = E R [ 1 + C sin ( f x + δ 2 ) ] , I G ( x ) = E G [ 1 - C sin ( f x - δ 2 ) ] ,
I L ( x ) = I R ( x ) S L ( λ R ) + I G ( x ) S L ( λ G ) ,
I L ( x ) = K L δ = π + C { [ K L δ = 0 cos ( δ / 2 ) ] 2 + [ K L δ = π sin ( δ / 2 ) ] 2 } 1 / 2 sin [ f x - φ L ( δ ) ] ,
I C ( x ) = K C δ = π + C { [ K C δ = 0 cos ( δ / 2 ) ] 2 + [ K C δ = π sin ( δ / 2 ) ] 2 } 1 / 2 sin [ f x - φ C ( δ ) ] ,
C ( δ ) = 1 / { [ sin ( δ / 2 ) T L ] 2 + [ cos ( δ / 2 ) T C ] 2 } 1 / 2 .
T C / C ( δ ) = { [ k sin ( δ / 2 ) ] 2 + [ cos ( δ / 2 ) ] 2 } 1 / 2 .
C L ( E R , E G ) = C K L δ = 0 K L δ = π = C E R S L ( λ R ) - E G S L ( λ G ) E R S L ( λ R ) + E G S L ( λ G ) .
C C ( E R , E G ) = C .
T C / C ( K ) = { [ k ( 1 - K ) / ( 1 + K ) ] 2 + 1 } 1 / 2 ,

Metrics