Abstract

Detection thresholds were obtained for a 2° Gaussian-blurred spot flashed for 200 ms on an 8.9° white adapting field of 1070 trolands. The spot’s contrast was represented in an L-, M-, and S-cone contrast space. Detection thresholds were obtained for many vectors close to specific but theoretically important planes within this space. A three-dimensional surface was fitted to the data generated by the probability summation of three mechanisms, each a weighted sum of cone contrasts. The fit revealed a red–green chromatic mechanism driven by ΔL/L − ΔM/M with no S-cone input that was 1 order of magnitude more sensitive than the two other mechanisms. The latter consisted of a luminance mechanism with little S-cone input and a blue–yellow chromatic mechanism with the S cone opposed to L and M cones.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, New York, 1982).
  2. B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
    [CrossRef] [PubMed]
  3. W. S. Stiles, “A modified Helmholtz line element in the brightness-colour space,” Proc. Phys. Soc. London 58, 41–65 (1946).
    [CrossRef]
  4. W. R. J. Brown, D. L. MacAdam, “Visual sensitivities to combined chromaticity and luminance differences,” J. Opt. Soc. Am. 39, 808–834 (1949).
    [CrossRef] [PubMed]
  5. L. Silberstein, D. L. MacAdam, “The distribution of color matchings around a color center,” J. Opt. Soc. Am. 35, 32–39 (1945).
    [CrossRef]
  6. W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
    [CrossRef]
  7. H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  8. P. E. King-Smith, D. Carden, “Luminance and opponentcolor contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [CrossRef] [PubMed]
  9. R. M. Boynton, Human Colour Vision (Holt, Rinehart & Winston, New York, 1979).
  10. J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [CrossRef] [PubMed]
  11. B. W. Tansley, R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976);A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987);J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).
    [CrossRef] [PubMed]
  12. A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [CrossRef] [PubMed]
  13. L. M. Hurvich, Color Vision (Sinauer, Sunderland, Mass., 1981).
  14. K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
    [CrossRef] [PubMed]
  15. M. Kalloniatis, R. S. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
    [CrossRef] [PubMed]
  16. M. Kalloniatis, R. S. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
    [CrossRef] [PubMed]
  17. W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967);reproduced in W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–289.
  18. J. E. Thornton, E. N. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 362–373.
  19. The three detection mechanisms that are the concern of this paper have been given the perceptually neutral symbols L + M, L − M, and S − (M + L), so that the action of each mechanism is not necessarily identified with the perception of certain unique colors at suprathreshold contrasts.
  20. C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330;C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [CrossRef] [PubMed]
  21. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
    [CrossRef] [PubMed]
  22. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
    [CrossRef] [PubMed]
  23. C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc. Am. 73, 1533–1543 (1983).
    [CrossRef] [PubMed]
  24. B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62–71 (1985).
    [CrossRef] [PubMed]
  25. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984);P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991);K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  26. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974);J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. II: Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [CrossRef] [PubMed]
  27. J. Krauskopf, B. Farell, “Influence of colour on the perception of coherent motion,” Nature (London) 348, 328–331 (1990).
    [CrossRef]
  28. P. Gouras, E. Zrenner, “Color vision: a review from a neurophysiological perspective,” in Progress in Sensory Physiology, H. Autrum, D. Ottoson, E. R. Perl, R. F. Schmidt, eds. (Springer-VerlagBerlin, 1979), Vol. 1, pp. 139–179.
    [CrossRef]
  29. F. M. DeMonasterio, P. Gouras, D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).
  30. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
    [PubMed]
  31. R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature (London) 356, 716–718 (1992).
    [CrossRef]
  32. B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989);P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
    [PubMed]
  33. D. Y. Ts’o, “The functional organization and connectivity of color processing,” in Neural Mechanisms of Visual Perception (Retina Research Foundation), D. M-K. Lam, C. D. Gilbert, eds. (Gulf, Houston, Texas, 1989), Vol. 2, pp. 87–115.
  34. R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
    [CrossRef] [PubMed]
  35. T. Hine, G. R. Cole, W. Mcllhagga, “Luminance and chromatic mechanisms in L-, M- and S-cone contrast space,” Invest. Ophthalmol. Vis. Sci. Suppl. 34, 263 (1990).
  36. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  37. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [CrossRef] [PubMed]
  38. B. Powell, “Colorimetric report on Tektronix 690SR for the Optical Sciences ANU,” Rep. 890001TV (Federal Television Engineering, Australian Broadcasting Corporation, Sydney, Australia, 1989).
  39. L. Arend, A. Reeves, “Simultaneous colour constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986), App. A.
    [CrossRef] [PubMed]
  40. R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
    [CrossRef]
  41. G. R. Cole, T. J. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comp. 24, 22–27 (1992).
    [CrossRef]
  42. E. Catmull, “A tutorial on compensation tables,” Comput. Graphics 13, 1–7 (1979);W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graphics 17, 315–321 (1983);A. B. Watson, K. R. K. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. Comp. 18, 587–594 (1986);D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
    [CrossRef]
  43. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  44. A. B. Watson, “Probability summation over time,” Vision Res. 19, 515–522 (1979).
    [CrossRef] [PubMed]
  45. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  46. With respect to chromatic discrimination, the following paper claims that important details are hidden by averaging: R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).The related issue of individual differences in the range of color matches and repeatability is discussed by G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am. 61, 1135–1152 (1971),
    [CrossRef] [PubMed]
  47. P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
    [CrossRef]
  48. P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987);M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
    [CrossRef] [PubMed]
  49. L. T. Maloney, “The slope of the psychometric function at different wavelengths,” Vision Res. 30, 129–136 (1990).
    [CrossRef] [PubMed]
  50. J. J. Vos, P. L. Walraven, “On the derivation of foveal receptor primaries,” Vision Res. 11, 795–818 (1971);J. J. Vos, O. Estevez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
    [CrossRef] [PubMed]
  51. L. M. Hurvich, D. Jameson, “An opponent–process theory of colour vision,” Psychol. Rev. 64, 384–404 (1957).
    [CrossRef]
  52. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  53. A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
    [CrossRef] [PubMed]
  54. A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
    [CrossRef] [PubMed]
  55. R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
    [CrossRef]
  56. D. L. MacAdam, “Re: a flaw in equations for predicting chromatic differences,” Color Res. Appl. 9, 247–249 (1984).
  57. R. M. Boynton, A. L. Nagy, “Authors’ reply,” Color Res. Appl. 9, 249 (1984).
  58. C. R. Ingling, B. H. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [CrossRef]
  59. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
    [CrossRef] [PubMed]
  60. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
    [CrossRef] [PubMed]
  61. C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red-green chromatic detection,” Vision Res. 28, 931–940 (1988).
    [CrossRef] [PubMed]
  62. D. S. Greenhouse, T. E. Cohn, “Effect of chromatic uncertainty on detectability of a visual stimulus,” J. Opt. Soc. Am. 68, 266–267 (1978).
    [CrossRef] [PubMed]
  63. J. Gille, “Detection and identification of color increments to a white background,” J. Opt. Soc. Am. A 1, 1241 (A) (1984).
  64. K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
    [CrossRef] [PubMed]
  65. J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
    [CrossRef] [PubMed]
  66. M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature (London) 349, 235–238 (1991).
    [CrossRef]
  67. Q. Zaidi, D. Halevy, “Chromatic mechanisms beyond linear opponency,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 337–348.
    [CrossRef]
  68. R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
    [CrossRef]

1992 (2)

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

G. R. Cole, T. J. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comp. 24, 22–27 (1992).
[CrossRef]

1991 (3)

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

M. Kalloniatis, R. S. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[CrossRef]

1990 (8)

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[CrossRef] [PubMed]

L. T. Maloney, “The slope of the psychometric function at different wavelengths,” Vision Res. 30, 129–136 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

M. Kalloniatis, R. S. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

T. Hine, G. R. Cole, W. Mcllhagga, “Luminance and chromatic mechanisms in L-, M- and S-cone contrast space,” Invest. Ophthalmol. Vis. Sci. Suppl. 34, 263 (1990).

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

J. Krauskopf, B. Farell, “Influence of colour on the perception of coherent motion,” Nature (London) 348, 328–331 (1990).
[CrossRef]

1989 (1)

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989);P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
[PubMed]

1988 (1)

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red-green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef] [PubMed]

1987 (3)

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987);M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

1986 (3)

L. Arend, A. Reeves, “Simultaneous colour constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986), App. A.
[CrossRef] [PubMed]

R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

1985 (2)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62–71 (1985).
[CrossRef] [PubMed]

1984 (5)

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984);P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991);K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

J. Gille, “Detection and identification of color increments to a white background,” J. Opt. Soc. Am. A 1, 1241 (A) (1984).

D. L. MacAdam, “Re: a flaw in equations for predicting chromatic differences,” Color Res. Appl. 9, 247–249 (1984).

R. M. Boynton, A. L. Nagy, “Authors’ reply,” Color Res. Appl. 9, 249 (1984).

1983 (4)

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc. Am. 73, 1533–1543 (1983).
[CrossRef] [PubMed]

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

1982 (2)

B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

1981 (2)

1980 (2)

With respect to chromatic discrimination, the following paper claims that important details are hidden by averaging: R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).The related issue of individual differences in the range of color matches and repeatability is discussed by G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am. 61, 1135–1152 (1971),
[CrossRef] [PubMed]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
[CrossRef] [PubMed]

1979 (3)

A. B. Watson, “Probability summation over time,” Vision Res. 19, 515–522 (1979).
[CrossRef] [PubMed]

E. Catmull, “A tutorial on compensation tables,” Comput. Graphics 13, 1–7 (1979);W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graphics 17, 315–321 (1983);A. B. Watson, K. R. K. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. Comp. 18, 587–594 (1986);D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

1978 (1)

1977 (2)

C. R. Ingling, B. H. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

1976 (2)

B. W. Tansley, R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976);A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987);J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).
[CrossRef] [PubMed]

P. E. King-Smith, D. Carden, “Luminance and opponentcolor contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[CrossRef] [PubMed]

1975 (1)

F. M. DeMonasterio, P. Gouras, D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

1974 (2)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974);J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. II: Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef]

1971 (2)

J. J. Vos, P. L. Walraven, “On the derivation of foveal receptor primaries,” Vision Res. 11, 795–818 (1971);J. J. Vos, O. Estevez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

1967 (1)

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967);reproduced in W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–289.

1964 (1)

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

1957 (1)

L. M. Hurvich, D. Jameson, “An opponent–process theory of colour vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

1949 (1)

1946 (1)

W. S. Stiles, “A modified Helmholtz line element in the brightness-colour space,” Proc. Phys. Soc. London 58, 41–65 (1946).
[CrossRef]

1945 (1)

1933 (1)

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

Adams, A. J.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987);M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

Arend, L.

Benes, S. C.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

Boynton, R. M.

R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
[CrossRef]

R. M. Boynton, A. L. Nagy, “Authors’ reply,” Color Res. Appl. 9, 249 (1984).

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

With respect to chromatic discrimination, the following paper claims that important details are hidden by averaging: R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).The related issue of individual differences in the range of color matches and repeatability is discussed by G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am. 61, 1135–1152 (1971),
[CrossRef] [PubMed]

B. W. Tansley, R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976);A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987);J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).
[CrossRef] [PubMed]

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

R. M. Boynton, Human Colour Vision (Holt, Rinehart & Winston, New York, 1979).

Bradley, A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Brainard, D. H.

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

Brown, W. R. J.

Carden, D.

Catmull, E.

E. Catmull, “A tutorial on compensation tables,” Comput. Graphics 13, 1–7 (1979);W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graphics 17, 315–321 (1983);A. B. Watson, K. R. K. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. Comp. 18, 587–594 (1986);D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

Cavanagh, P.

Cicerone, C. M.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974);J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. II: Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

Cohn, T. E.

Cole, G. R.

G. R. Cole, T. J. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comp. 24, 22–27 (1992).
[CrossRef]

T. Hine, G. R. Cole, W. Mcllhagga, “Luminance and chromatic mechanisms in L-, M- and S-cone contrast space,” Invest. Ophthalmol. Vis. Sci. Suppl. 34, 263 (1990).

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330;C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

DeMonasterio, F. M.

F. M. DeMonasterio, P. Gouras, D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

DePriest, D. D.

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Farell, B.

J. Krauskopf, B. Farell, “Influence of colour on the perception of coherent motion,” Nature (London) 348, 328–331 (1990).
[CrossRef]

Favreau, O. E.

Gille, J.

J. Gille, “Detection and identification of color increments to a white background,” J. Opt. Soc. Am. A 1, 1241 (A) (1984).

Gouras, P.

F. M. DeMonasterio, P. Gouras, D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

P. Gouras, E. Zrenner, “Color vision: a review from a neurophysiological perspective,” in Progress in Sensory Physiology, H. Autrum, D. Ottoson, E. R. Perl, R. F. Schmidt, eds. (Springer-VerlagBerlin, 1979), Vol. 1, pp. 139–179.
[CrossRef]

Greenhouse, D. S.

Halevy, D.

Q. Zaidi, D. Halevy, “Chromatic mechanisms beyond linear opponency,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 337–348.
[CrossRef]

Harwerth, R. S.

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Heuts, M. J. G.

Hine, T.

T. Hine, G. R. Cole, W. Mcllhagga, “Luminance and chromatic mechanisms in L-, M- and S-cone contrast space,” Invest. Ophthalmol. Vis. Sci. Suppl. 34, 263 (1990).

Hine, T. J.

G. R. Cole, T. J. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comp. 24, 22–27 (1992).
[CrossRef]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Hurvich, L. M.

L. M. Hurvich, D. Jameson, “An opponent–process theory of colour vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

L. M. Hurvich, Color Vision (Sinauer, Sunderland, Mass., 1981).

Ikeda, M.

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

Ingling, C. R.

C. R. Ingling, B. H. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

Jameson, D.

L. M. Hurvich, D. Jameson, “An opponent–process theory of colour vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

Kalloniatis, M.

Kambe, N.

With respect to chromatic discrimination, the following paper claims that important details are hidden by averaging: R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).The related issue of individual differences in the range of color matches and repeatability is discussed by G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am. 61, 1135–1152 (1971),
[CrossRef] [PubMed]

King-Smith, P. E.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

P. E. King-Smith, D. Carden, “Luminance and opponentcolor contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[CrossRef] [PubMed]

Koenderink, J. J.

Kranda, K.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974);J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. II: Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, B. Farell, “Influence of colour on the perception of coherent motion,” Nature (London) 348, 328–331 (1990).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330;C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

Kulikowski, J. J.

Larimer, J.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974);J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. II: Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

Lee, B. B.

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989);P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
[PubMed]

Lee, J.

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red-green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef] [PubMed]

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

MacAdam, D. L.

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Maloney, L. T.

L. T. Maloney, “The slope of the psychometric function at different wavelengths,” Vision Res. 30, 129–136 (1990).
[CrossRef] [PubMed]

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

Martin, P. R.

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989);P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
[PubMed]

Mcllhagga, W.

T. Hine, G. R. Cole, W. Mcllhagga, “Luminance and chromatic mechanisms in L-, M- and S-cone contrast space,” Invest. Ophthalmol. Vis. Sci. Suppl. 34, 263 (1990).

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[CrossRef]

Mullen, K. T.

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Nagy, A. L.

R. M. Boynton, A. L. Nagy, “Authors’ reply,” Color Res. Appl. 9, 249 (1984).

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

Noorlander, C.

Nuccio, E.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987);M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

Olson, C. X.

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

Pease, P. L.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987);M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

Pelli, D. G.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Poirson, A. B.

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

Powell, B.

B. Powell, “Colorimetric report on Tektronix 690SR for the Optical Sciences ANU,” Rep. 890001TV (Federal Television Engineering, Australian Broadcasting Corporation, Sydney, Australia, 1989).

Powell, I.

Pugh, E. N.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

J. E. Thornton, E. N. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 362–373.

Quick, R. F.

R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef]

Reeves, A.

Reid, R. C.

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

Shapley, R. M.

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

Silberstein, L.

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967);reproduced in W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–289.

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

W. S. Stiles, “A modified Helmholtz line element in the brightness-colour space,” Proc. Phys. Soc. London 58, 41–65 (1946).
[CrossRef]

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, New York, 1982).

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red-green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330;C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

Tansley, B. W.

B. W. Tansley, R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976);A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987);J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Thornton, J. E.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

J. E. Thornton, E. N. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 362–373.

Tolhurst, D. J.

F. M. DeMonasterio, P. Gouras, D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

Ts’o, D. Y.

D. Y. Ts’o, “The functional organization and connectivity of color processing,” in Neural Mechanisms of Visual Perception (Retina Research Foundation), D. M-K. Lam, C. D. Gilbert, eds. (Gulf, Houston, Texas, 1989), Vol. 2, pp. 87–115.

Tsou, B. H.

C. R. Ingling, B. H. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

Tyler, C. W.

Valberg, A.

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989);P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
[PubMed]

Varner, D. C.

Vingrys, A. J.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

Vos, J. J.

J. J. Vos, P. L. Walraven, “On the derivation of foveal receptor primaries,” Vision Res. 11, 795–818 (1971);J. J. Vos, O. Estevez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

Walraven, P. L.

J. J. Vos, P. L. Walraven, “On the derivation of foveal receptor primaries,” Vision Res. 11, 795–818 (1971);J. J. Vos, O. Estevez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

Wandell, B. A.

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62–71 (1985).
[CrossRef] [PubMed]

B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

A. B. Watson, “Probability summation over time,” Vision Res. 19, 515–522 (1979).
[CrossRef] [PubMed]

Webster, M. A.

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, New York, 1982).

Zaidi, Q.

Q. Zaidi, D. Halevy, “Chromatic mechanisms beyond linear opponency,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 337–348.
[CrossRef]

Zhang, X.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Zrenner, E.

P. Gouras, E. Zrenner, “Color vision: a review from a neurophysiological perspective,” in Progress in Sensory Physiology, H. Autrum, D. Ottoson, E. R. Perl, R. F. Schmidt, eds. (Springer-VerlagBerlin, 1979), Vol. 1, pp. 139–179.
[CrossRef]

Appl. Opt. (1)

Behav. Res. Methods Instrum. Comp. (1)

G. R. Cole, T. J. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comp. 24, 22–27 (1992).
[CrossRef]

Color Res. Appl. (6)

With respect to chromatic discrimination, the following paper claims that important details are hidden by averaging: R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).The related issue of individual differences in the range of color matches and repeatability is discussed by G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am. 61, 1135–1152 (1971),
[CrossRef] [PubMed]

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Appl. 12, 73–80 (1987).
[CrossRef]

R. M. Boynton, “A system of photometry and colorimetry based on cone excitations,” Color Res. Appl. 11, 244–252 (1986).
[CrossRef]

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

D. L. MacAdam, “Re: a flaw in equations for predicting chromatic differences,” Color Res. Appl. 9, 247–249 (1984).

R. M. Boynton, A. L. Nagy, “Authors’ reply,” Color Res. Appl. 9, 249 (1984).

Comput. Graphics (1)

E. Catmull, “A tutorial on compensation tables,” Comput. Graphics 13, 1–7 (1979);W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graphics 17, 315–321 (1983);A. B. Watson, K. R. K. Nielsen, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. Comp. 18, 587–594 (1986);D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

T. Hine, G. R. Cole, W. Mcllhagga, “Luminance and chromatic mechanisms in L-, M- and S-cone contrast space,” Invest. Ophthalmol. Vis. Sci. Suppl. 34, 263 (1990).

J. Colour Group (1)

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967);reproduced in W. S. Stiles, Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–289.

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (8)

J. Gille, “Detection and identification of color increments to a white background,” J. Opt. Soc. Am. A 1, 1241 (A) (1984).

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

L. Arend, A. Reeves, “Simultaneous colour constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986), App. A.
[CrossRef] [PubMed]

M. Kalloniatis, R. S. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

M. Kalloniatis, R. S. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
[CrossRef] [PubMed]

B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62–71 (1985).
[CrossRef] [PubMed]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984);P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991);K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

J. Physiol. (4)

F. M. DeMonasterio, P. Gouras, D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989);P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
[PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Kybernetik (1)

R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef]

Nature (London) (3)

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature (London) 349, 235–238 (1991).
[CrossRef]

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

J. Krauskopf, B. Farell, “Influence of colour on the perception of coherent motion,” Nature (London) 348, 328–331 (1990).
[CrossRef]

Percept. Psychophys. (1)

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Proc. Phys. Soc. London (1)

W. S. Stiles, “A modified Helmholtz line element in the brightness-colour space,” Proc. Phys. Soc. London 58, 41–65 (1946).
[CrossRef]

Proc. R. Soc. London Ser. B (1)

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

Psychol. Rev. (2)

B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
[CrossRef] [PubMed]

L. M. Hurvich, D. Jameson, “An opponent–process theory of colour vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

Science (3)

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

B. W. Tansley, R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976);A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);W. Verdon, A. J. Adams, “Short-wavelength-sensitive cones do not contribute to mesopic luminosity,” J. Opt. Soc. Am. A 4, 91–95 (1987);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987);J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. 413, 563–593 (1989).
[CrossRef] [PubMed]

Vision Res. (17)

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

R. M. Boynton, M. Ikeda, W. S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974);J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity. II: Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vision Res. 20, 671–677 (1980).
[CrossRef] [PubMed]

C. R. Ingling, B. H. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red-green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef] [PubMed]

A. B. Watson, “Probability summation over time,” Vision Res. 19, 515–522 (1979).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987);M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

L. T. Maloney, “The slope of the psychometric function at different wavelengths,” Vision Res. 30, 129–136 (1990).
[CrossRef] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of foveal receptor primaries,” Vision Res. 11, 795–818 (1971);J. J. Vos, O. Estevez, P. L. Walraven, “Improved color fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[CrossRef] [PubMed]

Other (10)

B. Powell, “Colorimetric report on Tektronix 690SR for the Optical Sciences ANU,” Rep. 890001TV (Federal Television Engineering, Australian Broadcasting Corporation, Sydney, Australia, 1989).

Q. Zaidi, D. Halevy, “Chromatic mechanisms beyond linear opponency,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 337–348.
[CrossRef]

J. E. Thornton, E. N. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 362–373.

The three detection mechanisms that are the concern of this paper have been given the perceptually neutral symbols L + M, L − M, and S − (M + L), so that the action of each mechanism is not necessarily identified with the perception of certain unique colors at suprathreshold contrasts.

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330;C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

D. Y. Ts’o, “The functional organization and connectivity of color processing,” in Neural Mechanisms of Visual Perception (Retina Research Foundation), D. M-K. Lam, C. D. Gilbert, eds. (Gulf, Houston, Texas, 1989), Vol. 2, pp. 87–115.

P. Gouras, E. Zrenner, “Color vision: a review from a neurophysiological perspective,” in Progress in Sensory Physiology, H. Autrum, D. Ottoson, E. R. Perl, R. F. Schmidt, eds. (Springer-VerlagBerlin, 1979), Vol. 1, pp. 139–179.
[CrossRef]

L. M. Hurvich, Color Vision (Sinauer, Sunderland, Mass., 1981).

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley-Interscience, New York, 1982).

R. M. Boynton, Human Colour Vision (Holt, Rinehart & Winston, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of optical apparatus: TV, Tektronix 690SR color monitor; L’s, lenses; AL, achromatizing lens; AP, artificial pupil; FS, field stop; W’s, neutral-density wedges; IF, interference filter; GM, grating monochromator; BS’s, beamsplitters; S, 75-W xenon arc lamp.

Fig. 2
Fig. 2

Three-dimensional cone contrast space showing the planes (hatched) in which most of the test directions lay. As mentioned in the text, these are n = (0, 0, 1) (plane a), n = (−0.71, 0.71, 0) (plane b), and n = (0.71,0.71,0) (plane c, the equiluminant plane). Among the directions shown is the familiar achromatic (white-on-white) direction.

Fig. 3
Fig. 3

Best-fitting threshold detection surface generated by three linear mechanisms (see Appendix A) within cone contrast space. The data are from observer TJH.

Fig. 4
Fig. 4

Threshold data for the three observers for directions in the plane n = (0, 0, 1). Some data points lying slightly off the plane are not displayed. The curves are the intersections with this plane of the best-fitting probability summation surface generated by three independent linear mechanisms computed for each observer (see Appendix A and Subsection 3.A). The error bars are ±1 standard deviation.

Fig. 5
Fig. 5

Threshold data for directions in the equiluminant plane n = (0.71, 0.71, 0). The horizontal axis is the vector u = (−0.71, 0.71,0). The curves are the intersections of the best-fitting surfaces with the equiluminant plane; other details are the same as for Fig. 4.

Fig. 6
Fig. 6

Threshold data for directions in the plane n = (−0.71, 0.71, 0). The horizontal axis is the vector u = (0.71, 0.71, 0). The curves are the intersections of the best-fitting surfaces with this plane. Other details are the same as for Fig. 4.

Fig. 7
Fig. 7

Shaded segments are conditional confidence intervals (68%) on the directions (Θ, Φ) of the three mechanisms fitted for each observer’s data, where Φ is measured up from the plane n = (0, 0, 1). The L − M mechanism confidence intervals are virtually invisible owing to their extreme narrowness. The arrows are the mechanism directions, where only one polarity is shown for Φ.

Fig. 8
Fig. 8

Ellipsoid data from Ref. 4 for color center #32 (observers DLM and WRJB), transformed into cone contrast space and projected into each of the three planes of Figs. 4 (top), 5 (middle), and 6 (bottom). Also plotted are GRC’s detection contours reproduced from Figs. 46.

Tables (3)

Tables Icon

Table 1 Relative Cone Excitations L, ∊M, and S of Each Field Component

Tables Icon

Table 2 Obtained Parameters for Surface Best Fitted to Threshold Data Generated by Three Independent, Linear Mechanismsa

Tables Icon

Table 3 Additional Directions in Cone Contrast Space (Ad 1–Ad 4): Predicted (Fit) versus Observed (Obs) Thresholdsa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Pr ( correct ) = 0.5 ( i = 1 3 p i ) + ( 1 i = 1 3 p i ) .
Pr ( correct ) = 1 0.5 ( i = 1 3 p i ) .
p i = exp ( c i β ) ,
Pr ( correct ) = 1 0.5 exp ( i = 1 3 c i β ) .
c i = ( l i Δ L / L + m i Δ M / M + s i Δ S / S )
Pr ( correct ) = 1 0.5 exp [ i = 1 3 ( l i Δ L / L + m i Δ M / M + s i Δ S / S ) β ] ,
i = 1 3 ( l i Δ L / L + m i Δ M / M + s i Δ S / S ) β = 1 .
Θ = arctan ( m i l i ) , Φ = arctan [ s i ( i i 2 + m i 2 ) 1 / 2 ] .

Metrics