Abstract

Light propagation in strongly scattering media can be described by the diffusion approximation to the Boltzmann transport equation. We have derived analytical expressions based on the diffusion approximation that describe the photon density in a uniform, infinite, strongly scattering medium that contains a sinusoidally intensity-modulated point source of light. These expressions predict that the photon density will propagate outward from the light source as a spherical wave of constant phase velocity with an amplitude that attenuates with distance r from the source as exp(−αr)/r. The properties of the photon-density wave are given in terms of the spectral properties of the scattering medium. We have used the Green’s function obtained from the diffusion approximation to the Boltzmann transport equation with a sinusoidally modulated point source to derive analytic expressions describing the diffraction and the reflection of photon-density waves from an absorbing and/or reflecting semi-infinite plane bounded by a straight edge immersed in a strongly scattering medium. The analytic expressions given are in agreement with the results of frequency-domain experiments performed in skim-milk media and with Monte Carlo simulations. These studies provide a basis for the understanding of photon diffusion in strongly scattering media in the presence of absorbing and reflecting objects and allow for a determination of the conditions for obtaining maximum resolution and penetration for applications to optical tomography.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription