Abstract

The subjective crossed-cylinder aberroscope method of Howland and Howland [ J. Opt. Soc. Am. 67, 1508 ( 1977)] has been modified by the addition of a beam splitter and a camera to permit direct photographic recording of the distorted retinal image of the aberroscope grid. The ocular aberration can then be deduced from direct measurements of the grid distortion. Preliminary results on 11 subjects confirm earlier findings that (1) comalike, third-order aberrations are more important than spherical or other fourth-order aberrations in degrading the retinal image and (2) for the average subject, the diffraction-limited pupil size is approximately 3 mm. This new objective method for measuring wave aberration yields significantly less variance in population estimates of the coefficients of the wave-aberration polynomial than that of the previous subjective method.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye,” Opt. Acta 21, 395–412 (1974).
    [CrossRef]
  2. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  3. B. Howland, H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science. 193, 580–582 (1976).
    [CrossRef] [PubMed]
  4. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef]
  5. W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).
  6. H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
    [CrossRef]
  7. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
    [PubMed]
  8. H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
    [CrossRef]
  9. F. Berny, “Etude de la formation des images rétiniennes et détermination de l’aberration de sphéricité de l’oeil,” Vision Res. 9, 977–990 (1969).
    [CrossRef] [PubMed]
  10. F. Berny, S. Slansky, Wavefront Determination Resulting from Foucault Test as Applied to the Human Eye and Visual Instruments and Techniques, J. Home Dickson, ed. (Oriel, London, 1969), pp. 375–385.
  11. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. 6, 776–794 (1961).
  12. G. Walsh, “The measurement of the wavefront aberration of the human eye,” M.S. Thesis (Victoria University of Manchester, Manchester, England, 1983).

1980

W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).

1977

1976

B. Howland, H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science. 193, 580–582 (1976).
[CrossRef] [PubMed]

1974

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

1972

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

1969

F. Berny, “Etude de la formation des images rétiniennes et détermination de l’aberration de sphéricité de l’oeil,” Vision Res. 9, 977–990 (1969).
[CrossRef] [PubMed]

1966

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

1962

H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
[CrossRef]

1961

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. 6, 776–794 (1961).

1957

Bedford, R. E.

Berny, F.

F. Berny, “Etude de la formation des images rétiniennes et détermination de l’aberration de sphéricité de l’oeil,” Vision Res. 9, 977–990 (1969).
[CrossRef] [PubMed]

F. Berny, S. Slansky, Wavefront Determination Resulting from Foucault Test as Applied to the Human Eye and Visual Instruments and Techniques, J. Home Dickson, ed. (Oriel, London, 1969), pp. 375–385.

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

Charman, W. N.

W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).

Enoch, J. M.

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

Hopkins, H. H.

H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
[CrossRef]

Howland, B.

H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
[CrossRef]

B. Howland, H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science. 193, 580–582 (1976).
[CrossRef] [PubMed]

Howland, H. C.

H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
[CrossRef]

B. Howland, H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science. 193, 580–582 (1976).
[CrossRef] [PubMed]

Ohzu, H.

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

Slansky, S.

F. Berny, S. Slansky, Wavefront Determination Resulting from Foucault Test as Applied to the Human Eye and Visual Instruments and Techniques, J. Home Dickson, ed. (Oriel, London, 1969), pp. 375–385.

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. 6, 776–794 (1961).

van Meeteren, A.

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Walsh, G.

G. Walsh, “The measurement of the wavefront aberration of the human eye,” M.S. Thesis (Victoria University of Manchester, Manchester, England, 1983).

Wyszecki, G.

Biophys.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. 6, 776–794 (1961).

Br. J. Physiol. Opt.

W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980).

J. Opt. Soc. Am.

J. Physiol.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

Opt. Acta

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Proc. Phys. Soc.

H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
[CrossRef]

Science.

B. Howland, H. C. Howland, “Subjective measurement of high order aberrations of the eye,” Science. 193, 580–582 (1976).
[CrossRef] [PubMed]

Vision Res.

H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972).
[CrossRef]

F. Berny, “Etude de la formation des images rétiniennes et détermination de l’aberration de sphéricité de l’oeil,” Vision Res. 9, 977–990 (1969).
[CrossRef] [PubMed]

Other

F. Berny, S. Slansky, Wavefront Determination Resulting from Foucault Test as Applied to the Human Eye and Visual Instruments and Techniques, J. Home Dickson, ed. (Oriel, London, 1969), pp. 375–385.

G. Walsh, “The measurement of the wavefront aberration of the human eye,” M.S. Thesis (Victoria University of Manchester, Manchester, England, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Apparatus for the objective recording of crossed-cylinder aberroscope patterns. A, pseudo point source; B, heat-absorbing filter; C, UV-absorbing filter, type OY4; D, iris diaphragm; E, correcting lens; F, crossed-cylinder aberroscope; G, beam splitter; H, subject’s eye; I, camera objective; J, camera back with film.

Fig. 2
Fig. 2

A, Photograph of image of aberroscope grid on retina of subject PD. B, Computer reconstruction of aberroscope grid of PD using only high-order Taylor coefficients GO. Note that the omission of ophthalmic prescription terms DF results in the removal of the tilt of original grid that is due to uncorrected astigmatism. C, Topographic representation of wave aberration of subject PD. Contours are at 0.33-μm intervals.

Fig. 3
Fig. 3

Computer reconstructions of the aberroscopic grids of the subjects of this study.

Fig. 4
Fig. 4

A, MTF’s for the 11 subjects of Fig. 3. B, MTF for an eye with a 5-mm-diameter pupil, based on the right eyes of the 11 subjects, as calculated from the wave-front data. The shaded area includes ±1 standard deviation. For comparison, the upper dotted–dashed line is the diffraction limit for a 5-mm pupil, and the lower is the mean data of Campbell and Gubisch7 for a 4.9-mm pupil, based on the measurement of the retinal line-spread function; the dashed curve gives the result of multiplying our mean data by the retinal MTF of Ohzu and Enoch.8

Fig. 5
Fig. 5

Means, standard deviations, and standard errors of the Taylor coefficients of the 11 subjects of this study (open figures) compared with those of the 55 subjects of the study of Howland and Howland (filled figures).4 The differences between coefficients J and N of the two studies are significant.

Tables (3)

Tables Icon

Table 1 Orthonormal Polynomials for 6 × 6 and 7 × 7 Grids over the Interval (+1, −1, +1, −1)

Tables Icon

Table 2 Taylor Coefficients for Subjects of This Study

Tables Icon

Table 3 Mean-Squared Deviations Of Wave Fronts from a Perfect Spherocylinder for 5-mm Pupils

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W ( x , y ) = A + B x + C y + D x 2 + E x y + F y 2 + G x 3 + H x 2 y + I x y 2 + J y 3 + K x 4 + L x 3 y + M x 2 y 2 + N x y 3 + O y 4 .

Metrics