Abstract

An analysis of transverse laser resonator modes is presented, based on a recently developed coherence theory in the space-frequency domain. The modes are introduced by means of solutions of an integral equation that expresses a steady-state condition for a second-order correlation function of the field across a mirror of the laser cavity. All solutions of this integral equation are found to be expressible as quadratic forms involving the Fox–Li modes of the conventional theory. If there is no degeneracy, each mode is shown to be necessarily completely spatially coherent, at each frequency, within the framework of second-order correlation theory. It is also shown that, if several transverse modes are excited, the output cannot be completely spatially coherent.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (59)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription