Abstract

Spectral sensitivity and wavelength discrimination are determined along the nasal horizontal meridian of the human peripheral retina. The target size as a function of eccentricity is varied according to a particular cortical magnification factor. Spectral sensitivity is measured by flicker photometry parameterized for the flicker frequency (10–20 Hz) and is found to be independent of the eccentricity (0–80°) for 20-Hz flicker photometry after correction of the foveal spectral sensitivity for macular pigment absorption. This 20-Hz function is chosen as being representative for the peripheral luminous-efficiency function and is used in the wavelength-discrimination experiments. The peripheral retina can perform wavelength discrimination up to an eccentricity of 80°. If field-size scaling according to the eccentricity-dependent cone density, the cortical magnification factor, or the reciprocal of the interganglion cell distance is applied, then wavelength-discrimination performance from 8° to 80° eccentricity is roughly the same. Foveal wavelength discrimination is considerably better than peripheral wavelength discrimination.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  2. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,”J. Opt. Soc. Am. 71, 453–459 (1981).
    [CrossRef] [PubMed]
  3. U. T. Keesey, “Variables determining flicker sensitivity in small fields,”J. Opt. Soc. Am. 60, 390–398 (1970).
    [CrossRef] [PubMed]
  4. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1161–1121 (1980).
    [CrossRef]
  5. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,”J. Opt. Soc. Am. 41, 684–688 (1951).
    [CrossRef] [PubMed]
  6. P. E. King-Smith, “Visual detection analysed in terms of luminance and chromatic signals,” Nature 255, 69–70 (1975).
    [CrossRef] [PubMed]
  7. R. M. Boynton, W. Schafer, M. E. Neun, “Hue–wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
    [CrossRef] [PubMed]
  8. R. A. Weale, “Hue-discrimination in para central parts of the human retina measured at different luminance levels,”J. Physiol. 113, 115–122 (1951).
    [PubMed]
  9. H. Uchikawa, P. K. Kaiser, K. Uchikawa, “Color-discrimination perimetry,” Color 7, 264–272 (1982).
    [CrossRef]
  10. J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,”J. Opt. Soc. Am. 67, 202–207 (1977).
    [CrossRef] [PubMed]
  11. I. Abramov, J. Gordon, “Color vision in the peripheral retina. I. Spectral Sensitivity,”J. Opt. Soc. Am. 67, 195–201 (1977).
    [CrossRef] [PubMed]
  12. J. D. Moreland, A. Cruz, “Color perceptions with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
    [CrossRef]
  13. B. R. Wooten, G. Wald, “Color-vision mechanisms in the peripheral retina of normal and dichromatic observers,”J. Gen. Physiol. 61, 125–145 (1973).
    [CrossRef] [PubMed]
  14. T. K. Kuijk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vis. Res. 22, 1293–1297 (1982).
    [CrossRef]
  15. C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal color contrast in the peripheral visual field,” Vision Res. 23, 1–13 (1983).
    [CrossRef]
  16. J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
    [CrossRef] [PubMed]
  17. N. Drasdo, “The neural representation of visual space,” Nature 266, 554–556 (1977).
    [CrossRef] [PubMed]
  18. B. R. Wooten, K. Fuld, L. Spillmann, “Photopic spectral sensitivity of the peripheral retina,”J. Opt. Soc. Am. 65, 334–342 (1975).
    [CrossRef] [PubMed]
  19. R. A. Weale, “Spectral sensitivity and wavelength discrimination of the peripheral retina,”J. Physiol. 119, 170–190 (1953).
  20. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of the mean retinal illuminance,”J. Opt. Soc. Am. 68, 860–865 (1978).
    [CrossRef] [PubMed]
  21. Consider the standard wavelength to be λ. To determine a setting to longer wavelength the experimenter sets the test monochromator to a certain λ + Δλ1. If the answer of the subject is yes, the experimenter sets the test wavelength to a λ + Δλ2with Δλ2> Δλ. If the answer is no, Δλ2< Δλ1. In this way a setting can be determined iteratively. The same procedure is followed for setting to a shorter wavelength with respect to λ.
  22. D. B. Judd, “Colorimetry and artificial daylight,” in Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, Paris, 1951), p. 11.
  23. G. Wyszecki, W. S. Stiles, Color Science: Methods, Quantitative Data and Formulas (Wiley, New York, 1967).
  24. U. Stabell, B. Stabell, “Variation of macular pigmentation and in short wave cone sensitivity with eccentricity,”J. Opt. Soc. Am. 70, 706–711 (1980).
    [CrossRef] [PubMed]
  25. G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. Suppl. VI, 1–102 (1935).
  26. M. Gilbert, “Color perception in parafoveal vision,” Proc. Phys. Soc. London Sect. B 63, 83–89 (1950).
    [CrossRef]
  27. U. Stabell, B. Stabell, “The effect of rod activity on color matching functions,” Vision Res. 15, 1119–1123 (1975).
    [CrossRef]
  28. U. Stabell, B. Stabell, “Colour vision in the peripheral retina under photopic conditions,” Vision Res. 22, 839–844 (1982).
    [CrossRef]
  29. U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1977).
    [CrossRef] [PubMed]
  30. B. Stabell, U. Stabell, “Effects of rod activity on color threshold,” Vision Res. 16, 1105–1110 (1976).
    [CrossRef]
  31. B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
    [CrossRef]
  32. J. D. Moreland, “Peripheral color vision,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich (Springer-Verlag, New York, 1972), Vol. VII/4.
    [CrossRef]
  33. R. E. Bedford, G. W. Wyszecki, “Wavelength discrimination for point sources,”J. Opt. Soc. Am. 48, 129–135 (1958).
    [CrossRef] [PubMed]
  34. K. J. McCree, “Small-field tritanopia and the effect of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
    [CrossRef]
  35. B. Stabell, U. Stabell, “The chromaticity coordinates for spectrum colours of extrafoveal cones,” Vision Res. 17, 1091–1094 (1977).
    [CrossRef]
  36. R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
    [CrossRef] [PubMed]
  37. W. A. van de Grind, A. J. Doorn, J. J. Koenderink, “Detection of coherent movement in peripherally viewed random-dot patterns,”J. Opt. Soc. Am. 73, 1674–1683 (1983).
    [CrossRef] [PubMed]

1983 (2)

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal color contrast in the peripheral visual field,” Vision Res. 23, 1–13 (1983).
[CrossRef]

W. A. van de Grind, A. J. Doorn, J. J. Koenderink, “Detection of coherent movement in peripherally viewed random-dot patterns,”J. Opt. Soc. Am. 73, 1674–1683 (1983).
[CrossRef] [PubMed]

1982 (3)

T. K. Kuijk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vis. Res. 22, 1293–1297 (1982).
[CrossRef]

U. Stabell, B. Stabell, “Colour vision in the peripheral retina under photopic conditions,” Vision Res. 22, 839–844 (1982).
[CrossRef]

H. Uchikawa, P. K. Kaiser, K. Uchikawa, “Color-discrimination perimetry,” Color 7, 264–272 (1982).
[CrossRef]

1981 (1)

1980 (2)

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1161–1121 (1980).
[CrossRef]

U. Stabell, B. Stabell, “Variation of macular pigmentation and in short wave cone sensitivity with eccentricity,”J. Opt. Soc. Am. 70, 706–711 (1980).
[CrossRef] [PubMed]

1979 (1)

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

1978 (1)

1977 (6)

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1977).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “The chromaticity coordinates for spectrum colours of extrafoveal cones,” Vision Res. 17, 1091–1094 (1977).
[CrossRef]

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

N. Drasdo, “The neural representation of visual space,” Nature 266, 554–556 (1977).
[CrossRef] [PubMed]

J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,”J. Opt. Soc. Am. 67, 202–207 (1977).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, “Color vision in the peripheral retina. I. Spectral Sensitivity,”J. Opt. Soc. Am. 67, 195–201 (1977).
[CrossRef] [PubMed]

1976 (2)

B. Stabell, U. Stabell, “Effects of rod activity on color threshold,” Vision Res. 16, 1105–1110 (1976).
[CrossRef]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

1975 (3)

U. Stabell, B. Stabell, “The effect of rod activity on color matching functions,” Vision Res. 15, 1119–1123 (1975).
[CrossRef]

B. R. Wooten, K. Fuld, L. Spillmann, “Photopic spectral sensitivity of the peripheral retina,”J. Opt. Soc. Am. 65, 334–342 (1975).
[CrossRef] [PubMed]

P. E. King-Smith, “Visual detection analysed in terms of luminance and chromatic signals,” Nature 255, 69–70 (1975).
[CrossRef] [PubMed]

1973 (1)

B. R. Wooten, G. Wald, “Color-vision mechanisms in the peripheral retina of normal and dichromatic observers,”J. Gen. Physiol. 61, 125–145 (1973).
[CrossRef] [PubMed]

1970 (1)

1969 (1)

1964 (1)

R. M. Boynton, W. Schafer, M. E. Neun, “Hue–wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef] [PubMed]

1960 (1)

K. J. McCree, “Small-field tritanopia and the effect of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
[CrossRef]

1959 (1)

J. D. Moreland, A. Cruz, “Color perceptions with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

1958 (1)

1953 (1)

R. A. Weale, “Spectral sensitivity and wavelength discrimination of the peripheral retina,”J. Physiol. 119, 170–190 (1953).

1951 (2)

R. A. Weale, “Hue-discrimination in para central parts of the human retina measured at different luminance levels,”J. Physiol. 113, 115–122 (1951).
[PubMed]

W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,”J. Opt. Soc. Am. 41, 684–688 (1951).
[CrossRef] [PubMed]

1950 (1)

M. Gilbert, “Color perception in parafoveal vision,” Proc. Phys. Soc. London Sect. B 63, 83–89 (1950).
[CrossRef]

1935 (1)

G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. Suppl. VI, 1–102 (1935).

Abramov, I.

Bedford, R. E.

Bouman, M. A.

Boynton, R. M.

R. M. Boynton, W. Schafer, M. E. Neun, “Hue–wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef] [PubMed]

Brown, W. R. J.

Bueno de Mesquita, A. E.

Cruz, A.

J. D. Moreland, A. Cruz, “Color perceptions with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

den Ouden, R. J.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal color contrast in the peripheral visual field,” Vision Res. 23, 1–13 (1983).
[CrossRef]

Doorn, A. J.

Drasdo, N.

N. Drasdo, “The neural representation of visual space,” Nature 266, 554–556 (1977).
[CrossRef] [PubMed]

Edens, B. W.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal color contrast in the peripheral visual field,” Vision Res. 23, 1–13 (1983).
[CrossRef]

Fuld, K.

Gilbert, M.

M. Gilbert, “Color perception in parafoveal vision,” Proc. Phys. Soc. London Sect. B 63, 83–89 (1950).
[CrossRef]

Gordon, J.

Heuts, M. J. G.

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,”J. Opt. Soc. Am. 71, 453–459 (1981).
[CrossRef] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1161–1121 (1980).
[CrossRef]

Judd, D. B.

D. B. Judd, “Colorimetry and artificial daylight,” in Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, Paris, 1951), p. 11.

Kaiser, P. K.

H. Uchikawa, P. K. Kaiser, K. Uchikawa, “Color-discrimination perimetry,” Color 7, 264–272 (1982).
[CrossRef]

Keesey, U. T.

King-Smith, P. E.

P. E. King-Smith, “Visual detection analysed in terms of luminance and chromatic signals,” Nature 255, 69–70 (1975).
[CrossRef] [PubMed]

Koenderink, J. J.

Kuijk, T. K.

T. K. Kuijk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vis. Res. 22, 1293–1297 (1982).
[CrossRef]

Marc, R. E.

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

McCree, K. J.

K. J. McCree, “Small-field tritanopia and the effect of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
[CrossRef]

Moreland, J. D.

J. D. Moreland, A. Cruz, “Color perceptions with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

J. D. Moreland, “Peripheral color vision,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich (Springer-Verlag, New York, 1972), Vol. VII/4.
[CrossRef]

Neun, M. E.

R. M. Boynton, W. Schafer, M. E. Neun, “Hue–wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef] [PubMed]

Noorlander, C.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal color contrast in the peripheral visual field,” Vision Res. 23, 1–13 (1983).
[CrossRef]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,”J. Opt. Soc. Am. 71, 453–459 (1981).
[CrossRef] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1161–1121 (1980).
[CrossRef]

Osterberg, G. A.

G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. Suppl. VI, 1–102 (1935).

Rovamo, J.

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Schafer, W.

R. M. Boynton, W. Schafer, M. E. Neun, “Hue–wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef] [PubMed]

Slappendel, S.

Sperling, H. G.

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Spillmann, L.

Stabell, B.

U. Stabell, B. Stabell, “Colour vision in the peripheral retina under photopic conditions,” Vision Res. 22, 839–844 (1982).
[CrossRef]

U. Stabell, B. Stabell, “Variation of macular pigmentation and in short wave cone sensitivity with eccentricity,”J. Opt. Soc. Am. 70, 706–711 (1980).
[CrossRef] [PubMed]

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1977).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “The chromaticity coordinates for spectrum colours of extrafoveal cones,” Vision Res. 17, 1091–1094 (1977).
[CrossRef]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

B. Stabell, U. Stabell, “Effects of rod activity on color threshold,” Vision Res. 16, 1105–1110 (1976).
[CrossRef]

U. Stabell, B. Stabell, “The effect of rod activity on color matching functions,” Vision Res. 15, 1119–1123 (1975).
[CrossRef]

Stabell, U.

U. Stabell, B. Stabell, “Colour vision in the peripheral retina under photopic conditions,” Vision Res. 22, 839–844 (1982).
[CrossRef]

U. Stabell, B. Stabell, “Variation of macular pigmentation and in short wave cone sensitivity with eccentricity,”J. Opt. Soc. Am. 70, 706–711 (1980).
[CrossRef] [PubMed]

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1977).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “The chromaticity coordinates for spectrum colours of extrafoveal cones,” Vision Res. 17, 1091–1094 (1977).
[CrossRef]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

B. Stabell, U. Stabell, “Effects of rod activity on color threshold,” Vision Res. 16, 1105–1110 (1976).
[CrossRef]

U. Stabell, B. Stabell, “The effect of rod activity on color matching functions,” Vision Res. 15, 1119–1123 (1975).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Methods, Quantitative Data and Formulas (Wiley, New York, 1967).

Uchikawa, H.

H. Uchikawa, P. K. Kaiser, K. Uchikawa, “Color-discrimination perimetry,” Color 7, 264–272 (1982).
[CrossRef]

Uchikawa, K.

H. Uchikawa, P. K. Kaiser, K. Uchikawa, “Color-discrimination perimetry,” Color 7, 264–272 (1982).
[CrossRef]

van de Grind, W. A.

van der Horst, G. J. C.

Virsu, V.

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Wald, G.

B. R. Wooten, G. Wald, “Color-vision mechanisms in the peripheral retina of normal and dichromatic observers,”J. Gen. Physiol. 61, 125–145 (1973).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Spectral sensitivity and wavelength discrimination of the peripheral retina,”J. Physiol. 119, 170–190 (1953).

R. A. Weale, “Hue-discrimination in para central parts of the human retina measured at different luminance levels,”J. Physiol. 113, 115–122 (1951).
[PubMed]

Wooten, B. R.

B. R. Wooten, K. Fuld, L. Spillmann, “Photopic spectral sensitivity of the peripheral retina,”J. Opt. Soc. Am. 65, 334–342 (1975).
[CrossRef] [PubMed]

B. R. Wooten, G. Wald, “Color-vision mechanisms in the peripheral retina of normal and dichromatic observers,”J. Gen. Physiol. 61, 125–145 (1973).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Methods, Quantitative Data and Formulas (Wiley, New York, 1967).

Wyszecki, G. W.

Acta Ophthalmol. Suppl. (1)

G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. Suppl. VI, 1–102 (1935).

Color (1)

H. Uchikawa, P. K. Kaiser, K. Uchikawa, “Color-discrimination perimetry,” Color 7, 264–272 (1982).
[CrossRef]

Exp. Brain Res. (1)

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

B. R. Wooten, G. Wald, “Color-vision mechanisms in the peripheral retina of normal and dichromatic observers,”J. Gen. Physiol. 61, 125–145 (1973).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (12)

J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of the mean retinal illuminance,”J. Opt. Soc. Am. 68, 860–865 (1978).
[CrossRef] [PubMed]

J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,”J. Opt. Soc. Am. 67, 202–207 (1977).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, “Color vision in the peripheral retina. I. Spectral Sensitivity,”J. Opt. Soc. Am. 67, 195–201 (1977).
[CrossRef] [PubMed]

G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
[CrossRef] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,”J. Opt. Soc. Am. 71, 453–459 (1981).
[CrossRef] [PubMed]

U. T. Keesey, “Variables determining flicker sensitivity in small fields,”J. Opt. Soc. Am. 60, 390–398 (1970).
[CrossRef] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1161–1121 (1980).
[CrossRef]

W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,”J. Opt. Soc. Am. 41, 684–688 (1951).
[CrossRef] [PubMed]

B. R. Wooten, K. Fuld, L. Spillmann, “Photopic spectral sensitivity of the peripheral retina,”J. Opt. Soc. Am. 65, 334–342 (1975).
[CrossRef] [PubMed]

U. Stabell, B. Stabell, “Variation of macular pigmentation and in short wave cone sensitivity with eccentricity,”J. Opt. Soc. Am. 70, 706–711 (1980).
[CrossRef] [PubMed]

R. E. Bedford, G. W. Wyszecki, “Wavelength discrimination for point sources,”J. Opt. Soc. Am. 48, 129–135 (1958).
[CrossRef] [PubMed]

W. A. van de Grind, A. J. Doorn, J. J. Koenderink, “Detection of coherent movement in peripherally viewed random-dot patterns,”J. Opt. Soc. Am. 73, 1674–1683 (1983).
[CrossRef] [PubMed]

J. Physiol. (2)

R. A. Weale, “Hue-discrimination in para central parts of the human retina measured at different luminance levels,”J. Physiol. 113, 115–122 (1951).
[PubMed]

R. A. Weale, “Spectral sensitivity and wavelength discrimination of the peripheral retina,”J. Physiol. 119, 170–190 (1953).

Nature (2)

P. E. King-Smith, “Visual detection analysed in terms of luminance and chromatic signals,” Nature 255, 69–70 (1975).
[CrossRef] [PubMed]

N. Drasdo, “The neural representation of visual space,” Nature 266, 554–556 (1977).
[CrossRef] [PubMed]

Opt. Acta (2)

J. D. Moreland, A. Cruz, “Color perceptions with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

K. J. McCree, “Small-field tritanopia and the effect of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
[CrossRef]

Proc. Phys. Soc. London Sect. B (1)

M. Gilbert, “Color perception in parafoveal vision,” Proc. Phys. Soc. London Sect. B 63, 83–89 (1950).
[CrossRef]

Science (2)

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

R. M. Boynton, W. Schafer, M. E. Neun, “Hue–wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef] [PubMed]

Vis. Res. (1)

T. K. Kuijk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vis. Res. 22, 1293–1297 (1982).
[CrossRef]

Vision Res. (7)

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal color contrast in the peripheral visual field,” Vision Res. 23, 1–13 (1983).
[CrossRef]

B. Stabell, U. Stabell, “The chromaticity coordinates for spectrum colours of extrafoveal cones,” Vision Res. 17, 1091–1094 (1977).
[CrossRef]

U. Stabell, B. Stabell, “The effect of rod activity on color matching functions,” Vision Res. 15, 1119–1123 (1975).
[CrossRef]

U. Stabell, B. Stabell, “Colour vision in the peripheral retina under photopic conditions,” Vision Res. 22, 839–844 (1982).
[CrossRef]

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1977).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “Effects of rod activity on color threshold,” Vision Res. 16, 1105–1110 (1976).
[CrossRef]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

Other (4)

J. D. Moreland, “Peripheral color vision,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich (Springer-Verlag, New York, 1972), Vol. VII/4.
[CrossRef]

Consider the standard wavelength to be λ. To determine a setting to longer wavelength the experimenter sets the test monochromator to a certain λ + Δλ1. If the answer of the subject is yes, the experimenter sets the test wavelength to a λ + Δλ2with Δλ2> Δλ. If the answer is no, Δλ2< Δλ1. In this way a setting can be determined iteratively. The same procedure is followed for setting to a shorter wavelength with respect to λ.

D. B. Judd, “Colorimetry and artificial daylight,” in Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, Paris, 1951), p. 11.

G. Wyszecki, W. S. Stiles, Color Science: Methods, Quantitative Data and Formulas (Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the apparatus: Xe-L, xenon arc lamp; W, heat-absorbing filter; R, rotating sector mirror (frontal view is shown in the lower left-hand corner); L1–L12, lenses; D1–D4, diaphragms; M1–M2, monochromators; G1–G2, neutral-density wedges; S1–S5, flat-surface mirrors; O, ocular lens.

Fig. 2
Fig. 2

Spectral sensitivity determined by heterochromatic flicker photometry for several flicker frequencies at different retinal location () for the subjects AD and EK. Field sizes (W) scaled according to the cortical magnification factor.16 a–c, Flicker frequencies 10, 15, and 20 Hz, respectively. Circles: = 0°, W = 1.2°. Triangles: = 8°, W = 4°. Pluses: = 25°, W = 10°. Crosses: = 40°, W = 15.9°. Diamonds: = 80°, W = 36°. The results of EK are shifted 1.5 log units upward.

Fig. 3
Fig. 3

Foveal spectral sensitivity for a 1.2° target for several flicker frequencies for subjects AD and EK. Circles: f = 10 Hz; triangles: f = 15 Hz; pluses: f = 20 Hz. The results of EK are shifted 1.5 log units upward.

Fig. 4
Fig. 4

Spectral sensitivity at 40° eccentricity for a 15.9° target at several frequencies for both subjects. Circles: f = 10 Hz; triangles: f = 15 Hz; pluses: f = 20 Hz. The results of EK are shifted 1.5 log units upward.

Fig. 5
Fig. 5

Wavelength discrimination for a, subject AD, and b, subject EK at different retinal locations for field sizes scaled according to the cortical magnification factor. Method of plotting is similar to that used in Fig. 2.

Fig. 6
Fig. 6

Peripheral wavelength discrimination for subject AD. Comparison of this wavelength discrimination with foveal wavelength discrimination for a foveal target size of 0.22°. a–d: Circles: = 0°, W = 0.22°. Triangles: a: = 8°, W = 4°. b: = 25°, W = 10°. c: = 400, W = 15.9°. d: =80°, W = 36°.

Fig. 7
Fig. 7

Wavelength discrimination for subject AD at 25° eccentricity for two target sizes. Circles: W = 10°; triangles: W = 1.25°.

Fig. 8
Fig. 8

Wavelength discrimination for subject EK at 8° eccentricity. Circles: wavelength discrimination with luminance according to the 20-Hz spectral-sensitivity curve; triangles: wavelength discrimination with luminance according to the 10-Hz spectral sensitivity curve.

Fig. 9
Fig. 9

Wavelength discrimination as a function of eccentricity for subject AD for several wavelengths. a: λ = 460 nm, b: λ = 510 nm, c: λ = 560 nm, d: λ = 610 nm. Target sizes as a function of eccentricity scaled according to the cortical magnification factor for a foveal reference size of 1.2°. Target sizes of 4°, 10°, 15.9°, and 36° visual angle at 8°, 25°, 40°, and 80° eccentricity, respectively.

Metrics