Abstract

Orientation tuning curves were measured at 10 spatial frequencies ranging from 0.5 to 11.3 cycles per degree (cpd) using a masking paradigm. The stimuli were spatially localized test patterns of 1.0 octave bandwidth superimposed upon cosine grating masks. By using a model that corrects for the nonlinearity inherent in the masking process, we obtain the half-amplitude half-bandwidths (θ1/2) of Cartesian-separable receptive fields that may underlie orientation selectivity. Additional experiments show that the data are not compatible with separability in polar coordinates (spatial frequency and orientation). The orientation half-bandwidths have been found to decrease somewhat with increasing spatial frequency, going from about 30° at 0.5 cpd to 15° at 11.3 cpd, for both sustained and transient forms of temporal modulation. Similar bandwidths are obtained from data where the test is oriented along 45°. These bandwidth estimates are shown to be consistent with subthreshold summation data as well as physiological data from monkey striate cortex.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Phys. Lond. 148, 574–591 (1959).
  2. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  3. F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).
  4. R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
    [Crossref]
  5. R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
    [Crossref]
  6. T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
    [Crossref]
  7. H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
    [Crossref]
  8. C. R. Carlson, “Thresholds for perceived image sharpness,” Photographic Science and Engineering 22, 69–71 (1978).
  9. C. R. Carlson, R. W. Cohen, “A simple psychophysical model for predicting the visibility of displayed information,” Proc. SID 21, 229–246 (1980).
  10. G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1470 (1980).
    [Crossref] [PubMed]
  11. H. R. Wilson, “A transducer function for threshold and suprathreshold human vision,” Biol. Cybernetics 38, 171–178 (1980).
    [Crossref]
  12. C. A. Burbeck, D. H. Kelly, “Contrast gain measurements and the transient/sustained dichotomy,” J. Opt. Soc. Am. 71, 1335–1342 (1981).
    [PubMed]
  13. H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
    [Crossref] [PubMed]
  14. G. H. Henry, A. W. Goodwin, P. O. Bishop, “Spatial summation of responses in receptive fields of simple cells in cat striate cortex,” Exp. Brain Res. 32, 245–266 (1978).
    [Crossref] [PubMed]
  15. J. Bacon, P. E. King-Smith, “The detection of line segments,” Percept. 6, 125–131 (1977).
    [Crossref]
  16. J. J. Kulikowski, R. Abadi, P.E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
    [Crossref] [PubMed]
  17. J. G. Daugman, “Polar spectral nonseparability of two-dimensional spatial frequency channels,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 49 (1982).
  18. G. C. Phillips, H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, Ill., 1980.
  19. R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
    [Crossref]
  20. J. J. Kulikowski, “Orientational selectivity of human binocular and monocular vision revealed by simultaneous and successive masking,” J. Physiol. (London) 226, 67–68P (1972).
  21. C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. (London) 213, 157–174 (1971).
  22. C. F. Stromeyer, S. Klein, “Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings,” Vision Res. 15, 899–910 (1975).
    [Crossref] [PubMed]
  23. P.E. King-Smith, J. J. Kulikowski, “The detection of gratings by independent activation of line detectors,” J. Physiol. (London) 247, 237–271 (1975).
  24. N. Graham, B. E. Rogowitz, “Spatial pooling properties deduced from the detectability of FM and quasi-AM gratings: a reanalysis,” Vision Res. 16, 1021–1026 (1976).
    [Crossref] [PubMed]
  25. J. R. Bergen, H. R. Wilson, J. D. Cowan, “Further evidence for four mechanisms mediating vision at threshold: sensitivities to complex gratings and aperiodic stimuli,” J. Opt. Soc. Am. 69, 1580–1587 (1979).
    [Crossref] [PubMed]
  26. P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance,” J. Neurophysiol. 39, 1320–1333 (1976).
    [PubMed]
  27. G. F. Poggio, R. W. Doty, W. H. Talbot, “Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze,” J. Neurophysiol. 40, 1369–1391 (1977).
    [PubMed]
  28. J. A. Movshon, C. Blakemore, “Orientation specificity and spatial selectivity in human vision,” Percept. 2, 53–60 (1973).
    [Crossref]
  29. J. A. Movshon, “Two-dimensional spatial frequency tuning of cat striate cortical neurons,” presented at the Annual Meeting of the Society for Neuroscience, 1979.
  30. R. J. W. Mansfield, “Neural basis of orientation perception in primate vision,” Science 186, 133–135 (1974).
    [Crossref]
  31. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968), p. 91.

1983 (1)

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[Crossref]

1982 (3)

J. G. Daugman, “Polar spectral nonseparability of two-dimensional spatial frequency channels,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 49 (1982).

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref]

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref]

1981 (1)

1980 (3)

H. R. Wilson, “A transducer function for threshold and suprathreshold human vision,” Biol. Cybernetics 38, 171–178 (1980).
[Crossref]

G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1470 (1980).
[Crossref] [PubMed]

C. R. Carlson, R. W. Cohen, “A simple psychophysical model for predicting the visibility of displayed information,” Proc. SID 21, 229–246 (1980).

1979 (2)

1978 (2)

G. H. Henry, A. W. Goodwin, P. O. Bishop, “Spatial summation of responses in receptive fields of simple cells in cat striate cortex,” Exp. Brain Res. 32, 245–266 (1978).
[Crossref] [PubMed]

C. R. Carlson, “Thresholds for perceived image sharpness,” Photographic Science and Engineering 22, 69–71 (1978).

1977 (2)

J. Bacon, P. E. King-Smith, “The detection of line segments,” Percept. 6, 125–131 (1977).
[Crossref]

G. F. Poggio, R. W. Doty, W. H. Talbot, “Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze,” J. Neurophysiol. 40, 1369–1391 (1977).
[PubMed]

1976 (2)

N. Graham, B. E. Rogowitz, “Spatial pooling properties deduced from the detectability of FM and quasi-AM gratings: a reanalysis,” Vision Res. 16, 1021–1026 (1976).
[Crossref] [PubMed]

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance,” J. Neurophysiol. 39, 1320–1333 (1976).
[PubMed]

1975 (2)

C. F. Stromeyer, S. Klein, “Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings,” Vision Res. 15, 899–910 (1975).
[Crossref] [PubMed]

P.E. King-Smith, J. J. Kulikowski, “The detection of gratings by independent activation of line detectors,” J. Physiol. (London) 247, 237–271 (1975).

1974 (2)

R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
[Crossref]

R. J. W. Mansfield, “Neural basis of orientation perception in primate vision,” Science 186, 133–135 (1974).
[Crossref]

1973 (2)

J. A. Movshon, C. Blakemore, “Orientation specificity and spatial selectivity in human vision,” Percept. 2, 53–60 (1973).
[Crossref]

J. J. Kulikowski, R. Abadi, P.E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[Crossref] [PubMed]

1972 (1)

J. J. Kulikowski, “Orientational selectivity of human binocular and monocular vision revealed by simultaneous and successive masking,” J. Physiol. (London) 226, 67–68P (1972).

1971 (1)

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. (London) 213, 157–174 (1971).

1966 (1)

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

1962 (2)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[Crossref]

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

1959 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Phys. Lond. 148, 574–591 (1959).

Abadi, R.

J. J. Kulikowski, R. Abadi, P.E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[Crossref] [PubMed]

Albrecht, D. G.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref]

Bacon, J.

J. Bacon, P. E. King-Smith, “The detection of line segments,” Percept. 6, 125–131 (1977).
[Crossref]

Bergen, J. R.

Bishop, P. O.

G. H. Henry, A. W. Goodwin, P. O. Bishop, “Spatial summation of responses in receptive fields of simple cells in cat striate cortex,” Exp. Brain Res. 32, 245–266 (1978).
[Crossref] [PubMed]

Blakemore, C.

J. A. Movshon, C. Blakemore, “Orientation specificity and spatial selectivity in human vision,” Percept. 2, 53–60 (1973).
[Crossref]

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. (London) 213, 157–174 (1971).

Burbeck, C. A.

Campbell, F. W.

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Carlson, C. R.

C. R. Carlson, R. W. Cohen, “A simple psychophysical model for predicting the visibility of displayed information,” Proc. SID 21, 229–246 (1980).

C. R. Carlson, “Thresholds for perceived image sharpness,” Photographic Science and Engineering 22, 69–71 (1978).

Cohen, R. W.

C. R. Carlson, R. W. Cohen, “A simple psychophysical model for predicting the visibility of displayed information,” Proc. SID 21, 229–246 (1980).

Cornsweet, T. N.

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[Crossref]

Cowan, J. D.

Daugman, J. G.

J. G. Daugman, “Polar spectral nonseparability of two-dimensional spatial frequency channels,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 49 (1982).

DeValois, R. L.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref]

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref]

Doty, R. W.

G. F. Poggio, R. W. Doty, W. H. Talbot, “Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze,” J. Neurophysiol. 40, 1369–1391 (1977).
[PubMed]

Finlay, B. L.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance,” J. Neurophysiol. 39, 1320–1333 (1976).
[PubMed]

Foley, J. M.

Goodwin, A. W.

G. H. Henry, A. W. Goodwin, P. O. Bishop, “Spatial summation of responses in receptive fields of simple cells in cat striate cortex,” Exp. Brain Res. 32, 245–266 (1978).
[Crossref] [PubMed]

Graham, N.

N. Graham, B. E. Rogowitz, “Spatial pooling properties deduced from the detectability of FM and quasi-AM gratings: a reanalysis,” Vision Res. 16, 1021–1026 (1976).
[Crossref] [PubMed]

Henry, G. H.

G. H. Henry, A. W. Goodwin, P. O. Bishop, “Spatial summation of responses in receptive fields of simple cells in cat striate cortex,” Exp. Brain Res. 32, 245–266 (1978).
[Crossref] [PubMed]

Hepler, N.

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Phys. Lond. 148, 574–591 (1959).

Kelly, D. H.

King-Smith, P. E.

J. Bacon, P. E. King-Smith, “The detection of line segments,” Percept. 6, 125–131 (1977).
[Crossref]

King-Smith, P.E.

P.E. King-Smith, J. J. Kulikowski, “The detection of gratings by independent activation of line detectors,” J. Physiol. (London) 247, 237–271 (1975).

J. J. Kulikowski, R. Abadi, P.E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[Crossref] [PubMed]

Klein, S.

C. F. Stromeyer, S. Klein, “Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings,” Vision Res. 15, 899–910 (1975).
[Crossref] [PubMed]

Kulikowski, J. J.

P.E. King-Smith, J. J. Kulikowski, “The detection of gratings by independent activation of line detectors,” J. Physiol. (London) 247, 237–271 (1975).

J. J. Kulikowski, R. Abadi, P.E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[Crossref] [PubMed]

J. J. Kulikowski, “Orientational selectivity of human binocular and monocular vision revealed by simultaneous and successive masking,” J. Physiol. (London) 226, 67–68P (1972).

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Legge, G. E.

Mansfield, R. J. W.

R. J. W. Mansfield, “Neural basis of orientation perception in primate vision,” Science 186, 133–135 (1974).
[Crossref]

McFarlane, D. K.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[Crossref]

Movshon, J. A.

J. A. Movshon, C. Blakemore, “Orientation specificity and spatial selectivity in human vision,” Percept. 2, 53–60 (1973).
[Crossref]

J. A. Movshon, “Two-dimensional spatial frequency tuning of cat striate cortical neurons,” presented at the Annual Meeting of the Society for Neuroscience, 1979.

Nachmias, J.

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. (London) 213, 157–174 (1971).

Papoulis, A.

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968), p. 91.

Phillips, G. C.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[Crossref]

G. C. Phillips, H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, Ill., 1980.

Poggio, G. F.

G. F. Poggio, R. W. Doty, W. H. Talbot, “Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze,” J. Neurophysiol. 40, 1369–1391 (1977).
[PubMed]

Quick, R. F.

R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
[Crossref]

Rogowitz, B. E.

N. Graham, B. E. Rogowitz, “Spatial pooling properties deduced from the detectability of FM and quasi-AM gratings: a reanalysis,” Vision Res. 16, 1021–1026 (1976).
[Crossref] [PubMed]

Schiller, P. H.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance,” J. Neurophysiol. 39, 1320–1333 (1976).
[PubMed]

Stromeyer, C. F.

C. F. Stromeyer, S. Klein, “Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings,” Vision Res. 15, 899–910 (1975).
[Crossref] [PubMed]

Talbot, W. H.

G. F. Poggio, R. W. Doty, W. H. Talbot, “Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze,” J. Neurophysiol. 40, 1369–1391 (1977).
[PubMed]

Thorell, L. G.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref]

Volman, S. F.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance,” J. Neurophysiol. 39, 1320–1333 (1976).
[PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Phys. Lond. 148, 574–591 (1959).

Wilson, H. R.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[Crossref]

H. R. Wilson, “A transducer function for threshold and suprathreshold human vision,” Biol. Cybernetics 38, 171–178 (1980).
[Crossref]

J. R. Bergen, H. R. Wilson, J. D. Cowan, “Further evidence for four mechanisms mediating vision at threshold: sensitivities to complex gratings and aperiodic stimuli,” J. Opt. Soc. Am. 69, 1580–1587 (1979).
[Crossref] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[Crossref] [PubMed]

G. C. Phillips, H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, Ill., 1980.

Yund, E. W.

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref]

Am. J. Psychol. (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[Crossref]

Biol. Cybernetics (1)

H. R. Wilson, “A transducer function for threshold and suprathreshold human vision,” Biol. Cybernetics 38, 171–178 (1980).
[Crossref]

Exp. Brain Res. (1)

G. H. Henry, A. W. Goodwin, P. O. Bishop, “Spatial summation of responses in receptive fields of simple cells in cat striate cortex,” Exp. Brain Res. 32, 245–266 (1978).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

J. G. Daugman, “Polar spectral nonseparability of two-dimensional spatial frequency channels,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 49 (1982).

J. Neurophysiol. (2)

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance,” J. Neurophysiol. 39, 1320–1333 (1976).
[PubMed]

G. F. Poggio, R. W. Doty, W. H. Talbot, “Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze,” J. Neurophysiol. 40, 1369–1391 (1977).
[PubMed]

J. Opt. Soc. Am. (3)

J. Phys. Lond. (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Phys. Lond. 148, 574–591 (1959).

J. Physiol. (London) (5)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

F. W. Campbell, J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

J. J. Kulikowski, “Orientational selectivity of human binocular and monocular vision revealed by simultaneous and successive masking,” J. Physiol. (London) 226, 67–68P (1972).

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. (London) 213, 157–174 (1971).

P.E. King-Smith, J. J. Kulikowski, “The detection of gratings by independent activation of line detectors,” J. Physiol. (London) 247, 237–271 (1975).

Kybernetik (1)

R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974).
[Crossref]

Percept. (2)

J. Bacon, P. E. King-Smith, “The detection of line segments,” Percept. 6, 125–131 (1977).
[Crossref]

J. A. Movshon, C. Blakemore, “Orientation specificity and spatial selectivity in human vision,” Percept. 2, 53–60 (1973).
[Crossref]

Photographic Science and Engineering (1)

C. R. Carlson, “Thresholds for perceived image sharpness,” Photographic Science and Engineering 22, 69–71 (1978).

Proc. SID (1)

C. R. Carlson, R. W. Cohen, “A simple psychophysical model for predicting the visibility of displayed information,” Proc. SID 21, 229–246 (1980).

Science (1)

R. J. W. Mansfield, “Neural basis of orientation perception in primate vision,” Science 186, 133–135 (1974).
[Crossref]

Vision Res. (7)

N. Graham, B. E. Rogowitz, “Spatial pooling properties deduced from the detectability of FM and quasi-AM gratings: a reanalysis,” Vision Res. 16, 1021–1026 (1976).
[Crossref] [PubMed]

C. F. Stromeyer, S. Klein, “Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings,” Vision Res. 15, 899–910 (1975).
[Crossref] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[Crossref]

R. L. DeValois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref]

R. L. DeValois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref]

J. J. Kulikowski, R. Abadi, P.E. King-Smith, “Orientational selectivity of grating and line detectors in human vision,” Vision Res. 13, 1479–1486 (1973).
[Crossref] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[Crossref] [PubMed]

Other (3)

G. C. Phillips, H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, Ill., 1980.

J. A. Movshon, “Two-dimensional spatial frequency tuning of cat striate cortical neurons,” presented at the Annual Meeting of the Society for Neuroscience, 1979.

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968), p. 91.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Orientation masking data for subjects SL and WS at three spatial frequencies. Data obtained with sustained temporal modulation are shown as filled circles; with transient, as open circles. Solid and dashed lines show the respective model predictions (see text). Test stimuli were vertically oriented at 0° eccentricity.

Fig. 2
Fig. 2

Orientation masking data and predictions for subject SL with the test oriented along 45°.

Fig. 3
Fig. 3

Threshold elevations as a function of mask contrast for two spatial frequencies and two forms of temporal modulation.

Fig. 4
Fig. 4

Orientation half-amplitude half-bandwidths (θ1/2) estimated from the masking data for three subjects at several spatial frequencies. Filled symbols represent bandwidths obtained from sustained masking data; open symbols, those from transient data. Vertical test. The solid line passes through the average bandwidth value at each spatial frequency; the dashed line is based on physiological bandwidths reported by DeValois et al.5.

Fig. 5
Fig. 5

Orientation half-bandwidths for subjects SL and WS estimated from masking data where the test was oriented along 45°. Again, the solid line is drawn through the average bandwidth values.

Fig. 6
Fig. 6

Masking data for mask frequency equal to test frequency (filled circles) and for mask 1 octave below test frequency (open circles). The predictions for the first case are shown as solid lines, whereas the predictions for the mask 1 octave below the test are shown as dashed lines for Cartesian-separable receptive fields and as dotted lines for polar-separable receptive fields (see text). Cartesian separability clearly provides the better fit to the data, especially at large orientations. Vertical test, sustained presentation.

Fig. 7
Fig. 7

Subthreshold summation data and predictions (solid line) for test and background cosine gratings of frequency 13.5 cpd. Subject GP. Dashed line is the prediction assuming a circularly symmetric receptive field.

Fig. 8
Fig. 8

Subthreshold summation data and predictions for 3.4-cpd gratings. Dashed segment is the asymptotic value of the circularly symmetric prediction.

Fig. 9
Fig. 9

Orientation masking data at 1.0 cpd obtained with either an 8°-diameter field (open circles) or a 4° field (filled circles). Sustained temporal presentation. The dashed and solid lines are the respective model fits. No change in orientation bandwidth with the increased field size was found for subject SL, whereas a slight decrease from 27.5° to 26° was found for subject WS (see text).

Tables (1)

Tables Icon

Table 1 Empirical Values of [Eq. (1)] Used in Modeling the Masking Data

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T . E . ( θ ) = H [ S m ( θ ) C m ] ,
R F ( x , y ) = A × F ( x ) × G ( y ) .
F ( x ) = exp ( - x 2 / σ e 2 ) - B exp ( - x 2 / σ i 2 ) + C exp ( - x 2 / σ e 2 2 ) ,
G ( y ) = exp ( - y 2 / σ y 2 ) .
T . E . ( θ ) pred = ( S 1 4 + S 2 4 ) 1 / 4 { [ S 1 / T . E . 1 ( θ ) ] 4 + [ S 2 / T . E . 2 ( θ - θ ) ] 4 } - 1 / 4 ,
R = [ x y S ( x , y ) * R F ( x , y ) 4 ] 1 / 4 ,
S θ ( x , y ) = cos ( 2 π f x ) + K cos [ 2 π f ( x cos θ - y sin θ ) ] .
R F ( f , θ ) = A × F ( f , θ ) exp ( - π 2 σ y 2 f 2 sin 2 θ ) ,
S m ( θ ) = A × F ( f , θ ) exp ( - π 2 σ y 2 f 2 sin 2 θ ) .
ln [ S m ( θ ) ] = ln A + ln F ( f , θ ) - π 2 σ y 2 f 2 sin 2 ( θ ) ,
y ( θ ) = B + C × X ( θ ) ,
y ( θ ) = ln [ S m ( θ ) / F ( f , θ ) ] ,
B = ln A ,
C = σ y 2 ,
X ( θ ) = - π 2 f 2 sin 2 θ .

Metrics