Abstract

Phase conjugation (PC) that is due to degenerate forward four-wave mixing is studied both theoretically and experimentally. Similarly to backward four-wave mixing, the limiting efficiency of this process corresponds to the total energy transfer from each pump wave into the signal and conjugate waves, although in this case the Yariv oscillations do not occur. The numerical solution of the nonstationary problem is presented, revealing the transient oscillations of the PC-beam intensity with maxima many times exceeding the saturation value. PC of Q-switched and free-oscillating solid-state laser radiation is obtained by using the thermal nonlinearity of absorbing solutions. PC of cw laser radiation is obtained in a LiNbO3 crystal, the PC-beam intensity being six times larger than the initial intensity of the signal beam. The self-compensation of nonlinear phase distortions of the recording medium is demonstrated.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription