Abstract

The corneal electroretinogram (ERG) was used to investigate the spectral sensitivities of cones in 12 dichromatic squirrel monkeys (Saimiri sciureus) whose color-vision capacities were established in behavioral tests. Three different varieties of dichromacy were represented among these animals. A flicker-photometric procedure was used in which the ERG response to a rapidly flickering monochromatic test light was compared with the response elicited by a similarly flickering reference light. The spectral-sensitivity functions obtained by the use of this technique are similar to previous estimates of cone spectral sensitivity in dichromatic squirrel monkeys derived from direct microspectrophotometric measurements.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Riggs, B. R. Wooten, “Electrical measures and psychophysical data on human vision,” in Handbook of Sensory Physiology, Vol. VII/4, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 690–731.
    [CrossRef]
  2. J. C. Armington, The Electroretinogram (Academic, New York, 1974).
  3. E. Dodt, “Ergebnisse der Flimmer-Elektroretinographie,” Experientia 10, 330–333 (1954).
    [CrossRef] [PubMed]
  4. P. Padmos, D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthalmol. 11, 783–788 (1972).
    [PubMed]
  5. M. Korth, S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the two-color threshold technique,” Vision Res. 20, 205–212 (1980).
    [CrossRef]
  6. R. M. Boynton, W. S. Baron, “Field sensitivity of the red mechanism derived from primate local electroretinogram,” Vision Res. 22, 869–878 (1982).
    [CrossRef]
  7. C. R. Cavonius, “Color sensitive responses in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
    [CrossRef] [PubMed]
  8. J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,”J. Comp. Physiol. 151, 347–352 (1983).
    [CrossRef]
  9. E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
    [CrossRef]
  10. G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision,” Vision Res. (to be published).
  11. G. H. Jacobs, J. K. Bowmaker, J. D. Mollon, “Behavioural and microspectrophotometric measurements of colour vision in monkeys,” Nature 292, 541–543 (1981).
    [CrossRef] [PubMed]
  12. J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Microspectrophotometric measurements of Old and New World primates,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 57–68.
  13. J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations in colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B (to be published).
  14. J. Pokorny, V. C. Smith, G. Verriest, A. J. L. Pinckers, Congenital and Acquired Color Defects (Grune and Stratton, New York, 1979).
  15. T. G. Ebrey, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
    [CrossRef] [PubMed]
  16. S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
    [CrossRef] [PubMed]
  17. A. Cowey, “Projection of the retina onto striate and prestriate cortex in the squirrel monkey,”J. Neurophysiol. 27, 366–393 (1964).
  18. L. R. Wolin, L. C. Massopust, “Characteristics of the ocular fundus in primates,”J. Anat. 101, 693–699 (1967).
    [PubMed]
  19. D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
    [PubMed]
  20. G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): Sensitivity differences,” Vision Res. 23, 239–248 (1983).
    [CrossRef] [PubMed]
  21. G. L. Walls, G. G. Heath, “Neutral points in 138 protanopes and deuteranopes,”J. Opt. Soc. Am. 46, 640–649 (1956).
    [CrossRef] [PubMed]
  22. J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
    [PubMed]

1984 (1)

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

1983 (3)

G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): Sensitivity differences,” Vision Res. 23, 239–248 (1983).
[CrossRef] [PubMed]

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,”J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
[CrossRef]

1982 (1)

R. M. Boynton, W. S. Baron, “Field sensitivity of the red mechanism derived from primate local electroretinogram,” Vision Res. 22, 869–878 (1982).
[CrossRef]

1981 (2)

G. H. Jacobs, J. K. Bowmaker, J. D. Mollon, “Behavioural and microspectrophotometric measurements of colour vision in monkeys,” Nature 292, 541–543 (1981).
[CrossRef] [PubMed]

S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
[CrossRef] [PubMed]

1980 (1)

M. Korth, S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the two-color threshold technique,” Vision Res. 20, 205–212 (1980).
[CrossRef]

1977 (1)

T. G. Ebrey, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef] [PubMed]

1974 (1)

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

1972 (1)

P. Padmos, D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthalmol. 11, 783–788 (1972).
[PubMed]

1967 (1)

L. R. Wolin, L. C. Massopust, “Characteristics of the ocular fundus in primates,”J. Anat. 101, 693–699 (1967).
[PubMed]

1964 (2)

A. Cowey, “Projection of the retina onto striate and prestriate cortex in the squirrel monkey,”J. Neurophysiol. 27, 366–393 (1964).

C. R. Cavonius, “Color sensitive responses in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
[CrossRef] [PubMed]

1956 (1)

1954 (1)

E. Dodt, “Ergebnisse der Flimmer-Elektroretinographie,” Experientia 10, 330–333 (1954).
[CrossRef] [PubMed]

Armington, J. C.

J. C. Armington, The Electroretinogram (Academic, New York, 1974).

Auran, J. D.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Bailey, J. E.

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

Baron, W. S.

R. M. Boynton, W. S. Baron, “Field sensitivity of the red mechanism derived from primate local electroretinogram,” Vision Res. 22, 869–878 (1982).
[CrossRef]

Bowmaker, J. K.

G. H. Jacobs, J. K. Bowmaker, J. D. Mollon, “Behavioural and microspectrophotometric measurements of colour vision in monkeys,” Nature 292, 541–543 (1981).
[CrossRef] [PubMed]

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Microspectrophotometric measurements of Old and New World primates,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 57–68.

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations in colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B (to be published).

Boynton, R. M.

R. M. Boynton, W. S. Baron, “Field sensitivity of the red mechanism derived from primate local electroretinogram,” Vision Res. 22, 869–878 (1982).
[CrossRef]

Brenner, E.

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
[CrossRef]

Brown, P. K.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Cavonius, C. R.

C. R. Cavonius, “Color sensitive responses in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
[CrossRef] [PubMed]

Cowey, A.

A. Cowey, “Projection of the retina onto striate and prestriate cortex in the squirrel monkey,”J. Neurophysiol. 27, 366–393 (1964).

Dawis, S. M.

S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
[CrossRef] [PubMed]

Delori, F. C.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Dodt, E.

E. Dodt, “Ergebnisse der Flimmer-Elektroretinographie,” Experientia 10, 330–333 (1954).
[CrossRef] [PubMed]

Ebrey, T. G.

T. G. Ebrey, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef] [PubMed]

Heath, G. G.

Honig, B.

T. G. Ebrey, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef] [PubMed]

Jacobs, G. H.

G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): Sensitivity differences,” Vision Res. 23, 239–248 (1983).
[CrossRef] [PubMed]

G. H. Jacobs, J. K. Bowmaker, J. D. Mollon, “Behavioural and microspectrophotometric measurements of colour vision in monkeys,” Nature 292, 541–543 (1981).
[CrossRef] [PubMed]

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Microspectrophotometric measurements of Old and New World primates,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 57–68.

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations in colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B (to be published).

G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision,” Vision Res. (to be published).

Korth, M.

M. Korth, S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the two-color threshold technique,” Vision Res. 20, 205–212 (1980).
[CrossRef]

Massof, R. W.

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

Massopust, L. C.

L. R. Wolin, L. C. Massopust, “Characteristics of the ocular fundus in primates,”J. Anat. 101, 693–699 (1967).
[PubMed]

Mollon, J. D.

G. H. Jacobs, J. K. Bowmaker, J. D. Mollon, “Behavioural and microspectrophotometric measurements of colour vision in monkeys,” Nature 292, 541–543 (1981).
[CrossRef] [PubMed]

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Microspectrophotometric measurements of Old and New World primates,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 57–68.

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations in colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B (to be published).

Norren, D. V.

P. Padmos, D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthalmol. 11, 783–788 (1972).
[PubMed]

Nuboer, J. F. W.

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
[CrossRef]

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,”J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

Padmos, P.

P. Padmos, D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthalmol. 11, 783–788 (1972).
[PubMed]

Pinckers, A. J. L.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. Pinckers, Congenital and Acquired Color Defects (Grune and Stratton, New York, 1979).

Pokorny, J.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. Pinckers, Congenital and Acquired Color Defects (Grune and Stratton, New York, 1979).

Riggs, L. A.

L. A. Riggs, B. R. Wooten, “Electrical measures and psychophysical data on human vision,” in Handbook of Sensory Physiology, Vol. VII/4, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 690–731.
[CrossRef]

Smith, V. C.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. Pinckers, Congenital and Acquired Color Defects (Grune and Stratton, New York, 1979).

Snodderly, D. M.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

Sokol, S.

M. Korth, S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the two-color threshold technique,” Vision Res. 20, 205–212 (1980).
[CrossRef]

Spaan, J. P.

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
[CrossRef]

van Nuys, W. M.

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,”J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

Verriest, G.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. Pinckers, Congenital and Acquired Color Defects (Grune and Stratton, New York, 1979).

Walls, G. L.

Wolin, L. R.

L. R. Wolin, L. C. Massopust, “Characteristics of the ocular fundus in primates,”J. Anat. 101, 693–699 (1967).
[PubMed]

Wooten, B. R.

L. A. Riggs, B. R. Wooten, “Electrical measures and psychophysical data on human vision,” in Handbook of Sensory Physiology, Vol. VII/4, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 690–731.
[CrossRef]

Wortel, J. F.

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,”J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
[CrossRef]

Beh. Br. Res. (1)

E. Brenner, J. P. Spaan, J. F. Wortel, J. F. W. Nuboer, “Early color deprivation in the pigeon,” Beh. Br. Res. 8, 343–350 (1983).
[CrossRef]

Doc. Ophthalmol. (1)

C. R. Cavonius, “Color sensitive responses in the human flicker-ERG,” Doc. Ophthalmol. 18, 101–113 (1964).
[CrossRef] [PubMed]

Experientia (1)

E. Dodt, “Ergebnisse der Flimmer-Elektroretinographie,” Experientia 10, 330–333 (1954).
[CrossRef] [PubMed]

Invest. Ophthalmol. (1)

P. Padmos, D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthalmol. 11, 783–788 (1972).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Vis. Sci. 25, 660–673 (1984).
[PubMed]

J. Anat. (1)

L. R. Wolin, L. C. Massopust, “Characteristics of the ocular fundus in primates,”J. Anat. 101, 693–699 (1967).
[PubMed]

J. Comp. Physiol. (1)

J. F. W. Nuboer, W. M. van Nuys, J. F. Wortel, “Cone systems in the rabbit retina revealed by ERG null detection,”J. Comp. Physiol. 151, 347–352 (1983).
[CrossRef]

J. Neurophysiol. (1)

A. Cowey, “Projection of the retina onto striate and prestriate cortex in the squirrel monkey,”J. Neurophysiol. 27, 366–393 (1964).

J. Opt. Soc. Am. (1)

Mod. Probl. Ophthalmol. (1)

J. E. Bailey, R. W. Massof, “In search of the physiological neutral point,” Mod. Probl. Ophthalmol. 13, 135–139 (1974).
[PubMed]

Nature (1)

G. H. Jacobs, J. K. Bowmaker, J. D. Mollon, “Behavioural and microspectrophotometric measurements of colour vision in monkeys,” Nature 292, 541–543 (1981).
[CrossRef] [PubMed]

Vision Res. (5)

T. G. Ebrey, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef] [PubMed]

S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
[CrossRef] [PubMed]

M. Korth, S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the two-color threshold technique,” Vision Res. 20, 205–212 (1980).
[CrossRef]

R. M. Boynton, W. S. Baron, “Field sensitivity of the red mechanism derived from primate local electroretinogram,” Vision Res. 22, 869–878 (1982).
[CrossRef]

G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): Sensitivity differences,” Vision Res. 23, 239–248 (1983).
[CrossRef] [PubMed]

Other (6)

L. A. Riggs, B. R. Wooten, “Electrical measures and psychophysical data on human vision,” in Handbook of Sensory Physiology, Vol. VII/4, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 690–731.
[CrossRef]

J. C. Armington, The Electroretinogram (Academic, New York, 1974).

G. H. Jacobs, “Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision,” Vision Res. (to be published).

J. K. Bowmaker, J. D. Mollon, G. H. Jacobs, “Microspectrophotometric measurements of Old and New World primates,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 57–68.

J. D. Mollon, J. K. Bowmaker, G. H. Jacobs, “Variations in colour vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. London Ser. B (to be published).

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. Pinckers, Congenital and Acquired Color Defects (Grune and Stratton, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representations of the stimulus sequence and the recording system used to make ERG measurements of cone spectral sensitivity using a flicker-photometric procedure. The sequence of test and reference lights is illustrated in the upper-right-hand corner. Both lights were flickered at 25 Hz. The test light, reference light, and interstimulus durations were all equal. Calibration bar: 10 msec. The block diagram shows the major components of the recording system. The characteristics and functions of each block are described in the text.

Fig. 2
Fig. 2

Superimposed XY-plotter records illustrating the flicker-photometric procedure. Each of the five traces represents the ERG response produced from a comparison of a 640-nm test light with an achromatic reference light. The trace labeled 0.00 shows the response obtained when the intensity of the test light was adjusted so as to be equally effective to the reference light. The other traces represent the responses to systematic mismatches of the two lights (mismatch values given in log units). Calibration bars, 1 μV and 10 msec.

Fig. 3
Fig. 3

Flicker-photometric spectral-sensitivity functions obtained from two squirrel monkeys. These animals represent the first of three types of dichromatic color vision seen in this species. The filled circles show sensitivity values obtained by equating the effectiveness of monochromatic test lights and an achromatic reference light. These values have been corrected for absorbance by the squirrel-monkey lens. The solid lines are the best-fitting visual pigment nomograms, the spectral peak of which is shown on each function. The two curves have been arbitrarily positioned on the sensitivity axis.

Fig. 4
Fig. 4

Flicker-photometric spectral-sensitivity functions obtained from five squirrel monkeys. These animals have the second variety of dichromatic color vision seen in this species. Details are the same as those given for Fig. 3.

Fig. 5
Fig. 5

Flicker-photometric spectral-sensitivity functions obtained from five squirrel monkeys. These animals have the third variety of dichromatic color vision seen in this species. Details are the same as those given for Fig. 3.

Fig. 6
Fig. 6

Relationship between the 540/640-nm sensitivity ratios obtained from ERG flicker photometry and from behavioral measurements. Each point corresponds to an individual animal. The line represents a least-squares fit to the data. The two sets of data are significantly correlated (r = 0.85; df = 9; p < 0.01).

Metrics