Abstract

A few-mode fiber-optic resonant ring interferometer was fabricated. Using prism output coupling, we examined the intensity variation of the radiation pattern with phase shift in the sensing arm and could easily determine the phase difference by selecting two modes out of several modes. We also analyzed the intensity variation theoretically according to the phase shift of the sensing arm in the resonant ring interferometer.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16, 260–262 (1980).
    [CrossRef]
  2. W. V. Sorin, B. Y. Kim, H. J. Shaw, “Highly selective modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
    [CrossRef] [PubMed]
  3. B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
    [CrossRef] [PubMed]
  4. W. V. Sorin, B. Y. Kim, H. J. Shaw, “Phase-velocity measurements using prism output coupling for single- and few-mode optical fibers,” Opt. Lett. 11, 106–108 (1986).
    [CrossRef] [PubMed]
  5. P. K. Tien, R. Ulrich, “Theory of prism-film coupler light guides,”J. Opt. Soc. Am. 60, 1325–1350 (1970).
    [CrossRef]
  6. J. E. Midwinter, M. H. Reeve, “A technique for the study of mode cut-offs in multimode optical fibers,” Opt. Quantum Electron. 7, 297–301 (1975).
    [CrossRef]
  7. H. Lee, M. Oh, Y. Kim, “Two-mode fiber-optic resonant ring interferometer as a sensor,” Opt. Lett. 3, 198–200 (1990).
  8. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef] [PubMed]
  9. K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Efficient power combiner for multiplexing multiple sources to single-fiber optical systems,” Appl. Phys. Lett. 31, 740–742 (1977).
    [CrossRef]
  10. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
    [CrossRef]
  11. L. F. Stokes, M. Chodorow, H. J. Shaw, “All single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [CrossRef] [PubMed]
  12. H. C. Lefevre, “Single-mode fiber fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–779 (1980).
    [CrossRef]
  13. H. F. Taylor, “Bending effects in optical fiber,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
    [CrossRef]

1990 (1)

H. Lee, M. Oh, Y. Kim, “Two-mode fiber-optic resonant ring interferometer as a sensor,” Opt. Lett. 3, 198–200 (1990).

1986 (3)

1984 (1)

H. F. Taylor, “Bending effects in optical fiber,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
[CrossRef]

1982 (1)

1980 (2)

H. C. Lefevre, “Single-mode fiber fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–779 (1980).
[CrossRef]

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16, 260–262 (1980).
[CrossRef]

1977 (1)

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Efficient power combiner for multiplexing multiple sources to single-fiber optical systems,” Appl. Phys. Lett. 31, 740–742 (1977).
[CrossRef]

1975 (1)

J. E. Midwinter, M. H. Reeve, “A technique for the study of mode cut-offs in multimode optical fibers,” Opt. Quantum Electron. 7, 297–301 (1975).
[CrossRef]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

1971 (1)

1970 (1)

Bergh, R. A.

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16, 260–262 (1980).
[CrossRef]

Blake, J. N.

Chodorow, M.

Engan, H. E.

Gloge, D.

Hill, K. O.

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Efficient power combiner for multiplexing multiple sources to single-fiber optical systems,” Appl. Phys. Lett. 31, 740–742 (1977).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Efficient power combiner for multiplexing multiple sources to single-fiber optical systems,” Appl. Phys. Lett. 31, 740–742 (1977).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Efficient power combiner for multiplexing multiple sources to single-fiber optical systems,” Appl. Phys. Lett. 31, 740–742 (1977).
[CrossRef]

Kim, B. Y.

Kim, Y.

H. Lee, M. Oh, Y. Kim, “Two-mode fiber-optic resonant ring interferometer as a sensor,” Opt. Lett. 3, 198–200 (1990).

Kotler, G.

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16, 260–262 (1980).
[CrossRef]

Lee, H.

H. Lee, M. Oh, Y. Kim, “Two-mode fiber-optic resonant ring interferometer as a sensor,” Opt. Lett. 3, 198–200 (1990).

Lefevre, H. C.

H. C. Lefevre, “Single-mode fiber fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–779 (1980).
[CrossRef]

Midwinter, J. E.

J. E. Midwinter, M. H. Reeve, “A technique for the study of mode cut-offs in multimode optical fibers,” Opt. Quantum Electron. 7, 297–301 (1975).
[CrossRef]

Oh, M.

H. Lee, M. Oh, Y. Kim, “Two-mode fiber-optic resonant ring interferometer as a sensor,” Opt. Lett. 3, 198–200 (1990).

Reeve, M. H.

J. E. Midwinter, M. H. Reeve, “A technique for the study of mode cut-offs in multimode optical fibers,” Opt. Quantum Electron. 7, 297–301 (1975).
[CrossRef]

Shaw, H. J.

Sorin, W. V.

Stokes, L. F.

Taylor, H. F.

H. F. Taylor, “Bending effects in optical fiber,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
[CrossRef]

Tien, P. K.

Ulrich, R.

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Efficient power combiner for multiplexing multiple sources to single-fiber optical systems,” Appl. Phys. Lett. 31, 740–742 (1977).
[CrossRef]

Electron. Lett. (2)

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16, 260–262 (1980).
[CrossRef]

H. C. Lefevre, “Single-mode fiber fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–779 (1980).
[CrossRef]

IEEE J. Lightwave Technol. (1)

H. F. Taylor, “Bending effects in optical fiber,” IEEE J. Lightwave Technol. LT-2, 617–628 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

J. E. Midwinter, M. H. Reeve, “A technique for the study of mode cut-offs in multimode optical fibers,” Opt. Quantum Electron. 7, 297–301 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement for the FORRI: D.C., directional coupler; P.O.C., prism output coupler; O., oscilloscope; P.D., photodiode; P.Z.T., piezoelectric transducer; F.G. function generator; L.A., lock-in analyzer; C.R., chart recorder; Ls (=3 m), sensing arm.

Fig. 2
Fig. 2

Output radiation patterns projected onto a screen with a He–Ne laser light beam (0.6328 μm): (a) single-mode fiber at 0.6328 μm, (b) single-mode fiber at 0.8200 μm, (c) single-mode fiber at 1.3000 μm.

Fig. 3
Fig. 3

Output light intensity I variation due to an external perturbation (nonuniform): (a) from one of the prism output radiation patterns; (b), (c) from the two-mode fiber (at 0.6328 μm) and with an adjustment of tunable directional coupler and ac and dc offset voltages.

Fig. 4
Fig. 4

Shape of the signal intensity I of a FORRI that is driven by a time-varying parameter P(t) that acts on the sensing arm: (a) single-mode light beam, (b) two-mode transmission (LP01 and LP11), phase difference 180°, (c) two-mode transmission (LP01 and LP11), phase difference 120°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P c i = P o i sin 2 [ κ i 2 + ( Δ β i / 2 ) 2 ] 1 / 2 L 1 + ( Δ β i / 2 κ i ) 2 ,
| E 4 E 1 | 2 = i = 1 m ( 1 - γ i ) [ 1 - ( 1 - κ i ) 2 ( 1 + κ i ) 2 - 4 κ i sin 2 ( ϕ / 2 - π / 4 ) ] ,

Metrics