Abstract

The Mie scattering coefficients satisfy recurrence relations:an−1, bn−1, an, and bn determine an+1, and bn+1. It is therefore possible, in principle, to generate the entire set from the first four, which has a simple interpretation. Each term in a multipole expansion of an electrostatic field can be obtained by differentiating the preceding term. The Mie coefficients are terms in a multipole expansion of a particular electromagnetic field, namely, that scattered by an arbitrary sphere. By analogy, it is not surprising that all these coefficients can be generated from the electric and magnetic dipole and quadrupole terms. Moreover, the recurrence relations for the Mie coefficients contain finite differences, in analogy with the infinitesimal differences (derivatives) in the multipole expansion of an electrostatic field.

© 1987 Optical Society of America

Full Article  |  PDF Article
Related Articles
Calculation of total cross sections of multiple-sphere clusters

Daniel W. Mackowski
J. Opt. Soc. Am. A 11(11) 2851-2861 (1994)

Light scattering from a spherical particle on a conducting plane: I. Normal incidence

B. R. Johnson
J. Opt. Soc. Am. A 9(8) 1341-1351 (1992)

Resonances in the efficiency factors for absorption: Mie scattering theory

Herbert S. Bennett and Gregory J. Rosasco
Appl. Opt. 17(4) 491-493 (1978)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription