Abstract

The accurate counting of laminated sheets, such as packing or printing sheets in industry, is extremely important because it greatly affects the economic cost. However, the different thicknesses, adhesion properties, and breakage points and the low contrast of sheets remain challenges to traditional counting methods based on image processing. This paper proposes a new stacked-sheet counting method with a deep learning approach using the U-Net architecture. A specific dataset according to the characteristics of stack side images is collected. The stripe of the center line of each sheet is used for semantic segmentation, and the complete side images of the slices are segmented via training with small image patches and testing with original large images. With this model, each pixel is classified by multi-layer convolution and deconvolution to determine whether it is the target object to be detected. After the model is trained, the test set is used to test the model, and a center region segmentation map based on the pixel points is obtained. By calculating the statistical median value of centerline points across different sections in these segmented images, the number of sheets can be obtained. Compared with traditional image algorithms in real product counting experiments, the proposed method can achieve better performance with higher accuracy and a lower error rate.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription