Abstract

Light spectra are a very important source of information for diverse classification problems, e.g., for discrimination of materials. To lower the cost of acquiring this information, multispectral cameras are used. Several techniques exist for estimating light spectra out of multispectral images by exploiting properties about the spectrum. Unfortunately, especially when capturing multispectral videos, the images are heavily affected by noise due to the nature of limited exposure times in videos. Therefore, models that explicitly try to lower the influence of noise on the reconstructed spectrum are highly desirable. Hence, a novel reconstruction algorithm is presented. This novel estimation method is based on the guided filtering technique that preserves basic structures, while using spatial information to reduce the influence of noise. The evaluation based on spectra of natural images reveals that this new technique yields better quantitative and subjective results in noisy scenarios than other state-of-the-art spatial reconstruction methods. Specifically, the proposed algorithm lowers the mean squared error and the spectral angle up to 46% and 35% in noisy scenarios, respectively. Furthermore, it is shown that the proposed reconstruction technique works out of the box and does not need any calibration or training by reconstructing spectra from a real-world multispectral camera with nine channels.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation

Philipp Urban, Mitchell R. Rosen, and Roy S. Berns
J. Opt. Soc. Am. A 26(8) 1865-1875 (2009)

Illuminant estimation in multispectral imaging

Haris Ahmad Khan, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Olivier Laligant
J. Opt. Soc. Am. A 34(7) 1085-1098 (2017)

Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation

Yuri Murakami, Ken Fukura, Masahiro Yamaguchi, and Nagaaki Ohyama
Opt. Express 16(6) 4106-4120 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription