Abstract

Imaging techniques through turbid materials have been extensively studied in recent years. The challenge now is to recover objects in a large field of view with depth-resolving ability. We present a method to image through a thin scattering layer automatically with the depth of the object detectable. By revealing the wavelength–depth-matching relation based on the axial memory effect, this method can automatically search the optimal wavelength of the reference light and compute the depth of the object. The no-reference image quality assessment function and rule-based searching algorithm are used in the searching process. The proposed method is promising for dynamic object tracking.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference

Xiaoqing Xu, Xiangsheng Xie, Abhilash Thendiyammal, Huichang Zhuang, Junpeng Xie, Yikun Liu, Jianying Zhou, and Allard P Mosk
Opt. Express 26(12) 15073-15083 (2018)

Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function

Xiaoqing Xu, Xiangsheng Xie, Hexiang He, Huichang Zhuang, Jianying Zhou, Abhilash Thendiyammal, and Allard P Mosk
Opt. Express 25(26) 32829-32840 (2017)

Imaging moving targets through scattering media

Michelle Cua, Edward (Haojiang) Zhou, and Changhuei Yang
Opt. Express 25(4) 3935-3945 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46, 262–272 (2007).
    [Crossref]
  2. R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals Sens. 3, 45–60 (2013).
  3. M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
    [Crossref]
  4. B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
    [Crossref]
  5. I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
    [Crossref]
  6. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
    [Crossref]
  7. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  8. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  9. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [Crossref]
  10. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
    [Crossref]
  11. H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21, 12539–12545 (2013).
    [Crossref]
  12. L. Li, Q. Li, S. Sun, H. Lin, W. Liu, and P. Chen, “Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function,” Opt. Lett. 43, 1670–1673 (2018).
    [Crossref]
  13. X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25, 32829–32840 (2017).
    [Crossref]
  14. H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
    [Crossref]
  15. W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Sci. Rep. 8, 9614 (2018).
    [Crossref]
  16. Z. Wang, X. Jin, and Q. Dai, “Publisher correction: non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8, 10419 (2018).
    [Crossref]
  17. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207–R227 (2003).
    [Crossref]
  18. K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22, 31426–31433 (2014).
    [Crossref]
  19. O. Salhov, G. Weinberg, and O. Katz, “Depth-resolved speckle-correlations imaging through scattering layers,” Opt. Lett. 43, 5528–5531 (2018).
    [Crossref]
  20. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
    [Crossref]
  21. X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
    [Crossref]
  22. X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
    [Crossref]
  23. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, Inc., 2007).
  24. Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
    [Crossref]
  25. S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
    [Crossref]
  26. A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
    [Crossref]
  27. J. M. Tenenbaum, Accommodation in Computer Vision (Stanford University, 1971).
  28. A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).
    [Crossref]
  29. A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Proc. Lett. 20, 209–212 (2013).
    [Crossref]
  30. Z. Wang and A. C. Bovik, “Reduced- and no-reference image quality assessment,” IEEE Signal Proc. Mag. 28, 29–40 (2011).
    [Crossref]
  31. Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
    [Crossref]
  32. S. U. Idinyang and N. A. Russell, “Real-time auto-focus implementation,” in Proceedings of 2011 Functional Optical Imaging (IEEE, 2011), pp. 1–2.
    [Crossref]
  33. J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference on Pattern Recognition (IEEE, 2000), Vol. 3, pp. 314–317.
    [Crossref]
  34. N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imaging 9, 197–203 (2003).
    [Crossref]

2018 (9)

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
[Crossref]

W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Sci. Rep. 8, 9614 (2018).
[Crossref]

Z. Wang, X. Jin, and Q. Dai, “Publisher correction: non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8, 10419 (2018).
[Crossref]

L. Li, Q. Li, S. Sun, H. Lin, W. Liu, and P. Chen, “Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function,” Opt. Lett. 43, 1670–1673 (2018).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
[Crossref]

O. Salhov, G. Weinberg, and O. Katz, “Depth-resolved speckle-correlations imaging through scattering layers,” Opt. Lett. 43, 5528–5531 (2018).
[Crossref]

2017 (2)

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25, 32829–32840 (2017).
[Crossref]

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

2016 (1)

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

2014 (2)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22, 31426–31433 (2014).
[Crossref]

2013 (4)

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21, 12539–12545 (2013).
[Crossref]

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Proc. Lett. 20, 209–212 (2013).
[Crossref]

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals Sens. 3, 45–60 (2013).

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

2012 (3)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).
[Crossref]

2011 (1)

Z. Wang and A. C. Bovik, “Reduced- and no-reference image quality assessment,” IEEE Signal Proc. Mag. 28, 29–40 (2011).
[Crossref]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref]

2007 (1)

2006 (1)

Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
[Crossref]

2003 (2)

N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imaging 9, 197–203 (2003).
[Crossref]

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207–R227 (2003).
[Crossref]

1997 (1)

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

1988 (2)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Abidi, B.

Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
[Crossref]

Abidi, M.

Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Bina, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Bovik, A. C.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Proc. Lett. 20, 209–212 (2013).
[Crossref]

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).
[Crossref]

Z. Wang and A. C. Bovik, “Reduced- and no-reference image quality assessment,” IEEE Signal Proc. Mag. 28, 29–40 (2011).
[Crossref]

Chamorro-Martinez, J.

J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference on Pattern Recognition (IEEE, 2000), Vol. 3, pp. 314–317.
[Crossref]

Chen, H.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Chen, P.

Chen, Q.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

Cristobal, G.

J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference on Pattern Recognition (IEEE, 2000), Vol. 3, pp. 314–317.
[Crossref]

Dai, Q.

Z. Wang, X. Jin, and Q. Dai, “Publisher correction: non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8, 10419 (2018).
[Crossref]

De Solórzano, C. O.

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

Del Pozo, F.

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

Doggaz, N.

Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
[Crossref]

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207–R227 (2003).
[Crossref]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Fernandez-Valdivia, J.

J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference on Pattern Recognition (IEEE, 2000), Vol. 3, pp. 314–317.
[Crossref]

Ferri, F.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Fleischer, J. W.

French, P. M. W.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207–R227 (2003).
[Crossref]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Gatti, A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Geng, Y.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, Inc., 2007).

Guan, Y.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21, 12539–12545 (2013).
[Crossref]

He, H.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25, 32829–32840 (2017).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21, 12539–12545 (2013).
[Crossref]

He, Z.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Idinyang, S. U.

S. U. Idinyang and N. A. Russell, “Real-time auto-focus implementation,” in Proceedings of 2011 Functional Optical Imaging (IEEE, 2011), pp. 1–2.
[Crossref]

Jin, X.

Z. Wang, X. Jin, and Q. Dai, “Publisher correction: non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8, 10419 (2018).
[Crossref]

Jouhanneau, J.-S.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Judkewitz, B.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Kafieh, R.

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals Sens. 3, 45–60 (2013).

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Karabutov, A. A.

Katz, O.

O. Salhov, G. Weinberg, and O. Katz, “Depth-resolved speckle-correlations imaging through scattering layers,” Opt. Lett. 43, 5528–5531 (2018).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Kehtarnavaz, N.

N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imaging 9, 197–203 (2003).
[Crossref]

Kermani, S.

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals Sens. 3, 45–60 (2013).

Khokhlova, T. D.

Kozhushko, V. V.

Kumar, M.

S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
[Crossref]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Li, G.

W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Sci. Rep. 8, 9614 (2018).
[Crossref]

Li, L.

Li, Q.

Liang, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Lin, H.

Liu, W.

Liu, Y.

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Lugiato, L. A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Magatti, D.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Malpica, N.

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

Mittal, A.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Proc. Lett. 20, 209–212 (2013).
[Crossref]

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).
[Crossref]

Molteni, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Moorthy, A. K.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).
[Crossref]

Mosk, A. P.

Mukherjee, S.

S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
[Crossref]

Oh, H. J.

N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imaging 9, 197–203 (2003).
[Crossref]

Papadopoulos, I. N.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Pech-Pacheco, J. L.

J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference on Pattern Recognition (IEEE, 2000), Vol. 3, pp. 314–317.
[Crossref]

Pelivanov, I. M.

Peña, J. M.

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

Poulet, J. F. A.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

Rabbani, H.

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals Sens. 3, 45–60 (2013).

Ren, L.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Rosen, J.

S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
[Crossref]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Russell, N. A.

S. U. Idinyang and N. A. Russell, “Real-time auto-focus implementation,” in Proceedings of 2011 Functional Optical Imaging (IEEE, 2011), pp. 1–2.
[Crossref]

Salhov, O.

Santos, A.

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Situ, G.

W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Sci. Rep. 8, 9614 (2018).
[Crossref]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Solomatin, V. S.

Soundararajan, R.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Proc. Lett. 20, 209–212 (2013).
[Crossref]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Sun, S.

Takasaki, K. T.

Tenenbaum, J. M.

J. M. Tenenbaum, Accommodation in Computer Vision (Stanford University, 1971).

Thendiyammal, A.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Vaquero, J. J.

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref]

Vijayakumar, A.

S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Wang, Z.

Z. Wang, X. Jin, and Q. Dai, “Publisher correction: non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8, 10419 (2018).
[Crossref]

Z. Wang and A. C. Bovik, “Reduced- and no-reference image quality assessment,” IEEE Signal Proc. Mag. 28, 29–40 (2011).
[Crossref]

Weinberg, G.

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, Inc., 2007).

Xie, J.

Xie, X.

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
[Crossref]

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25, 32829–32840 (2017).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Xu, C.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Xu, X.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25, 32829–32840 (2017).
[Crossref]

Yang, W.

W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Sci. Rep. 8, 9614 (2018).
[Crossref]

Yao, Y.

Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
[Crossref]

Ye, J.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

Zhao, G.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Zharinov, A. N.

Zhou, J.

Zhuang, B.

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

Zhuang, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26, 15073–15083 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25, 32829–32840 (2017).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (1)

B. Zhuang, C. Xu, Y. Geng, G. Zhao, H. Chen, Z. He, and L. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method,” Appl. Sci. 8, 1036 (2018).
[Crossref]

IEEE Photon. J. (1)

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory effect based filter to improve imaging quality through scattering layers,” IEEE Photon. J. 10, 1–10 (2018).
[Crossref]

IEEE Signal Proc. Lett. (1)

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Proc. Lett. 20, 209–212 (2013).
[Crossref]

IEEE Signal Proc. Mag. (1)

Z. Wang and A. C. Bovik, “Reduced- and no-reference image quality assessment,” IEEE Signal Proc. Mag. 28, 29–40 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).
[Crossref]

J. Med. Signals Sens. (1)

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals Sens. 3, 45–60 (2013).

J. Microsc. (1)

A. Santos, C. O. De Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. Del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188, 264–272 (1997).
[Crossref]

J. Phys. D (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207–R227 (2003).
[Crossref]

Nat. Photonics (3)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref]

Proc. SPIE (1)

Y. Yao, B. Abidi, N. Doggaz, and M. Abidi, “Evaluation of sharpness measures and search algorithms for the auto-focusing of high magnification images,” Proc. SPIE 6246, 62460G (2006).
[Crossref]

Real-Time Imaging (1)

N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imaging 9, 197–203 (2003).
[Crossref]

Sci. Rep. (5)

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Sci. Rep. 8, 9614 (2018).
[Crossref]

Z. Wang, X. Jin, and Q. Dai, “Publisher correction: non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8, 10419 (2018).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, “3D imaging through scatterers with interferenceless optical system,” Sci. Rep. 8, 1134 (2018).
[Crossref]

Other (4)

J. M. Tenenbaum, Accommodation in Computer Vision (Stanford University, 1971).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, Inc., 2007).

S. U. Idinyang and N. A. Russell, “Real-time auto-focus implementation,” in Proceedings of 2011 Functional Optical Imaging (IEEE, 2011), pp. 1–2.
[Crossref]

J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference on Pattern Recognition (IEEE, 2000), Vol. 3, pp. 314–317.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Principle.
Fig. 2.
Fig. 2. Experimental setup. Insets: hollowed-out letters on metal plates.
Fig. 3.
Fig. 3. (a) Image of unknown object reconstructed by illuminating the reference object at different wavelengths. Inserted numbers: selected wavelength. Scale bars: 500 μm. (b) Sharpness-wavelength curves of the images.
Fig. 4.
Fig. 4. Flowchart of the rule for wavelength scan. F_Current: sharpness from current image data; F_Previous: sharpness from previous image data; F_Max: maximum sharpness; C_Iteration: iteration counter; A_Control: control area (initial, fine, mid, and coarse); C_Down: downhill counter; T: tunable coefficient.
Fig. 5.
Fig. 5. Searching processes when the T is 0.5 (a), (b); 0.1 (c); and 1.3 (d). The d o 2 is 236.1 mm in (a), and 171.1 mm in (b)–(d). The vertical lines indicate the steps the program takes, and the colors display different fineness in the branches of the rule. The dashed lines indicate the maximal sharpness given by the program.
Fig. 6.
Fig. 6. Sharpness values as a function of wavelength with respect to different depths of unknown objects.

Tables (1)

Tables Icon

Table 1. Parameters and Results in Unknown Object Detection

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( x i ) = O * PSF ,
PSF = F 1 { F { O } * | F { O } | 2 + SNR 1 F { I } } ,
h n ( x i , y i ) = TM ( x s , y s ) exp [ i k n 2 f n ( x s 2 + y s 2 ) ] × exp [ i k n ( x i d i x s + y i d i y s ) ] d x s d y s ,
h 1 ( λ 1 f 2 / λ 2 f 1 x i , λ 1 f 2 / λ 2 f 1 y i ) = TM ( x s , y s ) exp [ i k 1 2 f 1 ( x s 2 + y s 2 ) ] × exp [ i k 2 λ 2 f 2 / λ 1 f 1 ( x i d i x s + y i d i y s ) ] d x s d y s .
λ 2 f 2 / λ 1 f 1 = 1 ,
h 1 ( λ 1 λ 2 x i , λ 1 λ 2 y i ) = h 2 ( x i , y i ) .
PSF 1 ( λ 1 λ 2 x i , λ 1 λ 2 y i ) = PSF 2 ( x i , y i ) .
l v ( m , n ) = 1 w x w y i w x j w y [ I ( m + i , n + j ) I ¯ ] 2 ,
VAR ( I ) = 1 M N m M n N [ l v ( m , n ) l v ¯ ] ,
F = VAR ( I ) m M n N I ( m , n ) 2 .

Metrics