Abstract

The near-vision performance of emmetropic presbyopes can be improved by the monocular surgical implantation of small-aperture corneal inlays or intraocular lenses that contain either an annular or circular stop to increase ocular depth of focus. Ray tracing is used to show that, although different stop designs and positions may produce similar axial imagery and increases in depth of focus, off-axis, the vignetting effects associated with the distance between the stop and the iris aperture result in different field dependences for the pupil transmittance. The implications of these effects, and of implanting a stop in only one eye, are discussed.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vignetting and negative dysphotopsia with intraocular lenses in “far peripheral vision”

Michael J. Simpson
J. Opt. Soc. Am. A 32(9) 1672-1677 (2015)

Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay

Christina Schwarz, Silvestre Manzanera, Pedro M. Prieto, Enrique J. Fernández, and Pablo Artal
Biomed. Opt. Express 5(10) 3355-3366 (2014)

Retinal illuminance using a wide-angle model of the eye

Kent P. Pflibsen, Oleg Pomerantzeff, and Robert N. Ross
J. Opt. Soc. Am. A 5(1) 146-150 (1988)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
    [Crossref]
  2. W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34, 8–29 (2014).
    [Crossref]
  3. W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34, 397–426 (2014).
    [Crossref]
  4. D. Miller and R. Johnson, “Quantification of the pinhole effect,” Surv. Ophthalmol. 21, 347–350 (1977).
    [Crossref]
  5. O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
    [Crossref]
  6. O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
    [Crossref]
  7. J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
    [Crossref]
  8. S. Vilupuru, L. Lin, and J. S. Pepose, “Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects,” Am. J. Ophthalmol. 160, 150–162 (2015).
    [Crossref]
  9. S. Srinivasan, “Small aperture intraocular lenses: the new kids on the block,” J. Cataract Refractive Surg. 44, 927–928 (2018).
    [Crossref]
  10. G. Grabner, R. Edward, and S. Vilupuru, “The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients,” Am. J. Ophthalmol. 160, 1176–1184 (2015).
    [Crossref]
  11. H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
    [Crossref]
  12. V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
    [Crossref]
  13. S. Agarwal and E. M. Thornell, “Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: visual outcomes and spectacle independence,” J. Cataract Refractive Surg. 44, 1150–1154 (2018).
    [Crossref]
  14. G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
    [Crossref]
  15. C. L. C. Trindade and B. L. C. Trindade, “Novel pinhole intraocular implant for the treatment of irregular corneal astigmatism and severe light sensitivity after penetrating keratoplasty,” JCRS Online Case Rep. 3, 4–7 (2015).
    [Crossref]
  16. C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
    [Crossref]
  17. A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
    [Crossref]
  18. D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
    [Crossref]
  19. T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
    [Crossref]
  20. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
    [Crossref]
  21. D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiolog. Opt. 29, 58–64 (2009).
    [Crossref]
  22. M. Muzyka-Woźniak and A. Ogar, “Anterior chamber depth and iris and lens position before and after phacoemulsification in eyes with a short or long axial length,” J. Cataract Refractive Surg. 42, 563–568 (2016).
    [Crossref]
  23. M. J. Simpson and M. Muzyka-Woźniak, “Iris characteristics affecting far peripheral vision and negative dysphotopsia,” J. Cataract Refractive Surg. 44, 459–465 (2018).
    [Crossref]
  24. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 20, p. 227.
  25. A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6), 3 (2013).
    [Crossref]
  26. A. C. Kooijman and F. K. Witmer, “Ganzfield light distribution on the retina of human and rabbit eyes: calculations and in vitro measurements,” J. Opt. Soc. Am. A 3, 2116–2120 (1986).
    [Crossref]
  27. K. P. Pflibsen, O. Pomerantzeff, and R. N. Ross, “Retinal illuminance using a wide-angle model of the eye,” J. Opt. Soc. Am. A 5, 146–150 (1988).
    [Crossref]
  28. W. N. Charman, “Light on the peripheral retina,” Ophthalmic Physiol. Opt. 9, 91–92 (1989).
    [Crossref]
  29. J. T. Holladay and M. J. Simpson, “Negative dysphotopsia: causes and rationale for prevention and treatment,” J. Cataract Refractive Surg. 43, 263–275 (2017).
    [Crossref]
  30. A. Reynaud, J. W. Zhou, and R. F. Hess, “Stereopsis and mean luminance,” J. Vis. 13(11), 1 (2013).
    [Crossref]
  31. E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
    [Crossref]
  32. S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
    [Crossref]
  33. R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
    [Crossref]
  34. S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
    [Crossref]
  35. G. Heron, M. McQuaid, and E. Morrice, “The Pulfrich effect in optometric practice,” Ophthalmic Physiol. Opt. 15, 425–429 (1995).
    [Crossref]
  36. C. J. Diaper, “Pulfrich revisited,” Surv. Ophthalmol. 41, 493–499 (1997).
    [Crossref]
  37. S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
    [Crossref]
  38. S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
    [Crossref]
  39. L. Z. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age Ageing 35, ii37–ii41 (2006).
    [Crossref]
  40. D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
    [Crossref]
  41. D. T. Landrigan, “Measurements of the Pulfrich effect over days of exposure,” J. Psychol. 117, 125–133 (1984).
    [Crossref]
  42. S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
    [Crossref]
  43. S. Manzanera, K. Webb, and P. Artal, “Adaptation to brightness in patients implanted with a small aperture,” Am. J. Ophthalmol. 197, 36–44 (2019).
    [Crossref]
  44. P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refractive Surg. 44, 734–737 (2018).
    [Crossref]

2019 (1)

S. Manzanera, K. Webb, and P. Artal, “Adaptation to brightness in patients implanted with a small aperture,” Am. J. Ophthalmol. 197, 36–44 (2019).
[Crossref]

2018 (6)

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refractive Surg. 44, 734–737 (2018).
[Crossref]

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

S. Srinivasan, “Small aperture intraocular lenses: the new kids on the block,” J. Cataract Refractive Surg. 44, 927–928 (2018).
[Crossref]

V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
[Crossref]

S. Agarwal and E. M. Thornell, “Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: visual outcomes and spectacle independence,” J. Cataract Refractive Surg. 44, 1150–1154 (2018).
[Crossref]

M. J. Simpson and M. Muzyka-Woźniak, “Iris characteristics affecting far peripheral vision and negative dysphotopsia,” J. Cataract Refractive Surg. 44, 459–465 (2018).
[Crossref]

2017 (4)

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

J. T. Holladay and M. J. Simpson, “Negative dysphotopsia: causes and rationale for prevention and treatment,” J. Cataract Refractive Surg. 43, 263–275 (2017).
[Crossref]

2016 (4)

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

M. Muzyka-Woźniak and A. Ogar, “Anterior chamber depth and iris and lens position before and after phacoemulsification in eyes with a short or long axial length,” J. Cataract Refractive Surg. 42, 563–568 (2016).
[Crossref]

2015 (4)

G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
[Crossref]

C. L. C. Trindade and B. L. C. Trindade, “Novel pinhole intraocular implant for the treatment of irregular corneal astigmatism and severe light sensitivity after penetrating keratoplasty,” JCRS Online Case Rep. 3, 4–7 (2015).
[Crossref]

G. Grabner, R. Edward, and S. Vilupuru, “The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients,” Am. J. Ophthalmol. 160, 1176–1184 (2015).
[Crossref]

S. Vilupuru, L. Lin, and J. S. Pepose, “Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects,” Am. J. Ophthalmol. 160, 150–162 (2015).
[Crossref]

2014 (2)

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34, 8–29 (2014).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34, 397–426 (2014).
[Crossref]

2013 (6)

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6), 3 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

A. Reynaud, J. W. Zhou, and R. F. Hess, “Stereopsis and mean luminance,” J. Vis. 13(11), 1 (2013).
[Crossref]

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

2012 (2)

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

2011 (1)

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

2009 (1)

D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiolog. Opt. 29, 58–64 (2009).
[Crossref]

2008 (2)

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

2006 (1)

L. Z. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age Ageing 35, ii37–ii41 (2006).
[Crossref]

1997 (2)

C. J. Diaper, “Pulfrich revisited,” Surv. Ophthalmol. 41, 493–499 (1997).
[Crossref]

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

1995 (1)

G. Heron, M. McQuaid, and E. Morrice, “The Pulfrich effect in optometric practice,” Ophthalmic Physiol. Opt. 15, 425–429 (1995).
[Crossref]

1993 (1)

D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
[Crossref]

1989 (1)

W. N. Charman, “Light on the peripheral retina,” Ophthalmic Physiol. Opt. 9, 91–92 (1989).
[Crossref]

1988 (1)

1986 (1)

1984 (1)

D. T. Landrigan, “Measurements of the Pulfrich effect over days of exposure,” J. Psychol. 117, 125–133 (1984).
[Crossref]

1977 (1)

D. Miller and R. Johnson, “Quantification of the pinhole effect,” Surv. Ophthalmol. 21, 347–350 (1977).
[Crossref]

Agarwal, S.

S. Agarwal and E. M. Thornell, “Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: visual outcomes and spectacle independence,” J. Cataract Refractive Surg. 44, 1150–1154 (2018).
[Crossref]

Aksoy, E. F.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Alagoz, N.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Altroudi, W.

G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
[Crossref]

Artal, P.

S. Manzanera, K. Webb, and P. Artal, “Adaptation to brightness in patients implanted with a small aperture,” Am. J. Ophthalmol. 197, 36–44 (2019).
[Crossref]

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refractive Surg. 44, 734–737 (2018).
[Crossref]

Atchison, D. A.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6), 3 (2013).
[Crossref]

D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiolog. Opt. 29, 58–64 (2009).
[Crossref]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 20, p. 227.

Azman, E.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Barnett, V.

V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
[Crossref]

Barrett, B. T.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Barsam, A.

V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
[Crossref]

Blazaki, S.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

Boniface, S. J.

D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
[Crossref]

Bozkurt, E.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Burnett, A.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Cakir, H.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Canning, C. R.

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

Charman, W. N.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34, 8–29 (2014).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34, 397–426 (2014).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

W. N. Charman, “Light on the peripheral retina,” Ophthalmic Physiol. Opt. 9, 91–92 (1989).
[Crossref]

Clavagnier, S.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Cronje, S.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Cumming, B.

D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
[Crossref]

Demirok, A.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Desautels, J. D.

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

Dexl, A. K.

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Diaper, C. J.

C. J. Diaper, “Pulfrich revisited,” Surv. Ophthalmol. 41, 493–499 (1997).
[Crossref]

Dick, H. B.

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

Ding, R.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Durrie, D. S.

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

Edward, R.

G. Grabner, R. Edward, and S. Vilupuru, “The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients,” Am. J. Ophthalmol. 160, 1176–1184 (2015).
[Crossref]

Eppig, T.

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

Frick, K. D.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Fricke, T. R.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Gehrmann, J.

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6), 3 (2013).
[Crossref]

Giannakopoulou, T.

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

Goebels, S.

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

Grabner, G.

G. Grabner, R. Edward, and S. Vilupuru, “The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients,” Am. J. Ophthalmol. 160, 1176–1184 (2015).
[Crossref]

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Guo, C.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Harrad, R. A.

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

Heron, G.

G. Heron, M. McQuaid, and E. Morrice, “The Pulfrich effect in optometric practice,” Ophthalmic Physiol. Opt. 15, 425–429 (1995).
[Crossref]

Hess, R. F.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

A. Reynaud, J. W. Zhou, and R. F. Hess, “Stereopsis and mean luminance,” J. Vis. 13(11), 1 (2013).
[Crossref]

Ho, S. M.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Hohensinn, M.

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Holden, B. A.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Holladay, J. T.

J. T. Holladay and M. J. Simpson, “Negative dysphotopsia: causes and rationale for prevention and treatment,” J. Cataract Refractive Surg. 43, 263–275 (2017).
[Crossref]

Johnson, R.

D. Miller and R. Johnson, “Quantification of the pinhole effect,” Surv. Ophthalmol. 21, 347–350 (1977).
[Crossref]

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

Kooijman, A. C.

Laidlaw, D. A.

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

Landrigan, D. T.

D. T. Landrigan, “Measurements of the Pulfrich effect over days of exposure,” J. Psychol. 117, 125–133 (1984).
[Crossref]

Langenbucher, A.

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

Levartovsky, S.

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

Levinger, E.

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

Levinger, S.

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

Lin, L.

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

S. Vilupuru, L. Lin, and J. S. Pepose, “Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects,” Am. J. Ophthalmol. 160, 150–162 (2015).
[Crossref]

Linn, S. H.

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

Liu, C.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Manzanera, S.

S. Manzanera, K. Webb, and P. Artal, “Adaptation to brightness in patients implanted with a small aperture,” Am. J. Ophthalmol. 197, 36–44 (2019).
[Crossref]

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refractive Surg. 44, 734–737 (2018).
[Crossref]

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

Mathur, A.

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6), 3 (2013).
[Crossref]

McQuaid, M.

G. Heron, M. McQuaid, and E. Morrice, “The Pulfrich effect in optometric practice,” Ophthalmic Physiol. Opt. 15, 425–429 (1995).
[Crossref]

Miall, R. C.

D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
[Crossref]

Miller, D.

D. Miller and R. Johnson, “Quantification of the pinhole effect,” Surv. Ophthalmol. 21, 347–350 (1977).
[Crossref]

Morrice, E.

G. Heron, M. McQuaid, and E. Morrice, “The Pulfrich effect in optometric practice,” Ophthalmic Physiol. Opt. 15, 425–429 (1995).
[Crossref]

Moshirfar, M.

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

Munoz, G.

G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
[Crossref]

Muzyka-Wozniak, M.

M. J. Simpson and M. Muzyka-Woźniak, “Iris characteristics affecting far peripheral vision and negative dysphotopsia,” J. Cataract Refractive Surg. 44, 459–465 (2018).
[Crossref]

M. Muzyka-Woźniak and A. Ogar, “Anterior chamber depth and iris and lens position before and after phacoemulsification in eyes with a short or long axial length,” J. Cataract Refractive Surg. 42, 563–568 (2016).
[Crossref]

Naidoo, K. S.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Nix, G.

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Ogar, A.

M. Muzyka-Woźniak and A. Ogar, “Anterior chamber depth and iris and lens position before and after phacoemulsification in eyes with a short or long axial length,” J. Cataract Refractive Surg. 42, 563–568 (2016).
[Crossref]

Osher, R.

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

Pallikaris, I. G.

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

Papas, E.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Pekel, G.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Pepose, J. S.

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

S. Vilupuru, L. Lin, and J. S. Pepose, “Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects,” Am. J. Ophthalmol. 160, 150–162 (2015).
[Crossref]

Petratou, D.

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

Pflibsen, K. P.

Piovella, M.

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

Plainis, S.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

Pokroy, R.

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

Pomerantzeff, O.

Pope, J. M.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

Quist, T. S.

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

Radhakrishnan, H.

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

Radia, K.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Reynaud, A.

A. Reynaud, J. W. Zhou, and R. F. Hess, “Stereopsis and mean luminance,” J. Vis. 13(11), 1 (2013).
[Crossref]

Riha, W.

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Rohrweck, S.

G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
[Crossref]

Ross, R. N.

Rubenstein, L. Z.

L. Z. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age Ageing 35, ii37–ii41 (2006).
[Crossref]

Rueckl, T.

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Sakla, H. F.

G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
[Crossref]

Santhiago, M. R.

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

Schlenther, G.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Scotcher, S. M.

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

Seitz, B.

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

Seyeddain, O.

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

Sholohov, G.

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

Simpson, M. J.

M. J. Simpson and M. Muzyka-Woźniak, “Iris characteristics affecting far peripheral vision and negative dysphotopsia,” J. Cataract Refractive Surg. 44, 459–465 (2018).
[Crossref]

J. T. Holladay and M. J. Simpson, “Negative dysphotopsia: causes and rationale for prevention and treatment,” J. Cataract Refractive Surg. 43, 263–275 (2017).
[Crossref]

Skanchy, D. F.

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 20, p. 227.

Spira, C.

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

Srinivasan, S.

V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
[Crossref]

S. Srinivasan, “Small aperture intraocular lenses: the new kids on the block,” J. Cataract Refractive Surg. 44, 927–928 (2018).
[Crossref]

Suheimat, M.

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

Szentmary, N.

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

Than, J.

V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
[Crossref]

Thompson, V.

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

Thornell, E. M.

S. Agarwal and E. M. Thornell, “Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: visual outcomes and spectacle independence,” J. Cataract Refractive Surg. 44, 1150–1154 (2018).
[Crossref]

Trindade, B. C.

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

Trindade, B. L. C.

C. L. C. Trindade and B. L. C. Trindade, “Novel pinhole intraocular implant for the treatment of irregular corneal astigmatism and severe light sensitivity after penetrating keratoplasty,” JCRS Online Case Rep. 3, 4–7 (2015).
[Crossref]

Trindade, C. C.

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

Trindade, C. L. C.

C. L. C. Trindade and B. L. C. Trindade, “Novel pinhole intraocular implant for the treatment of irregular corneal astigmatism and severe light sensitivity after penetrating keratoplasty,” JCRS Online Case Rep. 3, 4–7 (2015).
[Crossref]

Trindade, F. C.

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

Trivizki, O.

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

van de Pol, C.

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

Vilupuru, S.

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

G. Grabner, R. Edward, and S. Vilupuru, “The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients,” Am. J. Ophthalmol. 160, 1176–1184 (2015).
[Crossref]

S. Vilupuru, L. Lin, and J. S. Pepose, “Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects,” Am. J. Ophthalmol. 160, 150–162 (2015).
[Crossref]

Viner, C.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Vukich, J.

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

Vukich, J. A.

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

Weal, M. J.

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

Webb, K.

S. Manzanera, K. Webb, and P. Artal, “Adaptation to brightness in patients implanted with a small aperture,” Am. J. Ophthalmol. 197, 36–44 (2019).
[Crossref]

Werner, L.

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

Witmer, F. K.

Wolpert, D. M.

D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
[Crossref]

Wong, R.

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Yilmaz, O. F.

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

Zhou, J.

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

Zhou, J. W.

A. Reynaud, J. W. Zhou, and R. F. Hess, “Stereopsis and mean luminance,” J. Vis. 13(11), 1 (2013).
[Crossref]

Age Ageing (1)

L. Z. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age Ageing 35, ii37–ii41 (2006).
[Crossref]

Am. J. Ophthalmol. (3)

S. Vilupuru, L. Lin, and J. S. Pepose, “Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects,” Am. J. Ophthalmol. 160, 150–162 (2015).
[Crossref]

G. Grabner, R. Edward, and S. Vilupuru, “The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients,” Am. J. Ophthalmol. 160, 1176–1184 (2015).
[Crossref]

S. Manzanera, K. Webb, and P. Artal, “Adaptation to brightness in patients implanted with a small aperture,” Am. J. Ophthalmol. 197, 36–44 (2019).
[Crossref]

Arch. Ophthalmol. (1)

B. A. Holden, T. R. Fricke, S. M. Ho, R. Wong, G. Schlenther, S. Cronje, A. Burnett, E. Papas, K. S. Naidoo, and K. D. Frick, “Global vision impairment due to uncorrected presbyopia,” Arch. Ophthalmol. 126, 1731–1739 (2008).
[Crossref]

Biomed. Res. Int. (1)

A. Langenbucher, S. Goebels, N. Szentmary, B. Seitz, and T. Eppig, “Vignetting and field of view with the KAMRA corneal inlay,” Biomed. Res. Int. 2013, 154593 (2013).
[Crossref]

Br. J. Ophthalmol. (1)

S. M. Scotcher, D. A. Laidlaw, C. R. Canning, M. J. Weal, and R. A. Harrad, “Pulfrich’s phenomenon in unilateral cataract,” Br. J. Ophthalmol. 81, 1050–1055 (1997).
[Crossref]

Clin. Ophthalmol. (1)

S. H. Linn, D. F. Skanchy, T. S. Quist, J. D. Desautels, and M. Moshirfar, “Stereoacuity after small aperture corneal inlay implantation,” Clin. Ophthalmol. 11, 233–235 (2017).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

R. F. Hess, R. Ding, S. Clavagnier, C. Liu, C. Guo, C. Viner, B. T. Barrett, K. Radia, and J. Zhou, “A robust and reliable test to measure stereopsis in the clinic,” Invest. Ophthalmol. Visual Sci. 57, 798–804 (2016).
[Crossref]

J. Cataract Refractive Surg. (13)

M. Muzyka-Woźniak and A. Ogar, “Anterior chamber depth and iris and lens position before and after phacoemulsification in eyes with a short or long axial length,” J. Cataract Refractive Surg. 42, 563–568 (2016).
[Crossref]

M. J. Simpson and M. Muzyka-Woźniak, “Iris characteristics affecting far peripheral vision and negative dysphotopsia,” J. Cataract Refractive Surg. 44, 459–465 (2018).
[Crossref]

C. C. Trindade, B. C. Trindade, F. C. Trindade, L. Werner, R. Osher, and M. R. Santhiago, “New pinhole sulcus implant for the correction of irregular corneal astigmatism,” J. Cataract Refractive Surg. 43, 1297–1306 (2017).
[Crossref]

J. T. Holladay and M. J. Simpson, “Negative dysphotopsia: causes and rationale for prevention and treatment,” J. Cataract Refractive Surg. 43, 263–275 (2017).
[Crossref]

H. B. Dick, M. Piovella, J. Vukich, S. Vilupuru, and L. Lin, “Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery,” J. Cataract Refractive Surg. 43, 956–968 (2017).
[Crossref]

V. Barnett, A. Barsam, J. Than, and S. Srinivasan, “Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy,” J. Cataract Refractive Surg. 44, 1042–1045 (2018).
[Crossref]

S. Agarwal and E. M. Thornell, “Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: visual outcomes and spectacle independence,” J. Cataract Refractive Surg. 44, 1150–1154 (2018).
[Crossref]

G. Munoz, S. Rohrweck, H. F. Sakla, and W. Altroudi, “Pinhole iris-fixated intraocular lens for dysphotopsia and photophobia,” J. Cataract Refractive Surg. 41, 487–491 (2015).
[Crossref]

S. Srinivasan, “Small aperture intraocular lenses: the new kids on the block,” J. Cataract Refractive Surg. 44, 927–928 (2018).
[Crossref]

O. F. Yilmaz, N. Alagoz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakir, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: long-term results,” J. Cataract Refractive Surg. 37, 1275–1281 (2011).
[Crossref]

O. Seyeddain, M. Hohensinn, W. Riha, G. Nix, T. Rueckl, G. Grabner, and A. K. Dexl, “Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up,” J. Cataract Refractive Surg. 38, 35–45 (2012).
[Crossref]

J. A. Vukich, D. S. Durrie, J. S. Pepose, V. Thompson, C. van de Pol, and L. Lin, “Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. food and drug administration clinical trial,” J. Cataract Refractive Surg. 44, 541–556 (2018).
[Crossref]

P. Artal and S. Manzanera, “Perceived brightness with small apertures,” J. Cataract Refractive Surg. 44, 734–737 (2018).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Optom. (1)

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Reduced-aperture monovision for presbyopia and the Pulfrich effect,” J. Optom. 5, 156–163 (2012).
[Crossref]

J. Psychol. (1)

D. T. Landrigan, “Measurements of the Pulfrich effect over days of exposure,” J. Psychol. 117, 125–133 (1984).
[Crossref]

J. Vis. (3)

A. Reynaud, J. W. Zhou, and R. F. Hess, “Stereopsis and mean luminance,” J. Vis. 13(11), 1 (2013).
[Crossref]

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6), 3 (2013).
[Crossref]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref]

JCRS Online Case Rep. (1)

C. L. C. Trindade and B. L. C. Trindade, “Novel pinhole intraocular implant for the treatment of irregular corneal astigmatism and severe light sensitivity after penetrating keratoplasty,” JCRS Online Case Rep. 3, 4–7 (2015).
[Crossref]

Ophthalmic Physiol. Opt. (6)

D. A. Atchison, S. Blazaki, M. Suheimat, S. Plainis, and W. N. Charman, “Do small-aperture presbyopic corrections influence the visual field?” Ophthalmic Physiol. Opt. 36, 51–59 (2016).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34, 8–29 (2014).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34, 397–426 (2014).
[Crossref]

W. N. Charman, “Light on the peripheral retina,” Ophthalmic Physiol. Opt. 9, 91–92 (1989).
[Crossref]

G. Heron, M. McQuaid, and E. Morrice, “The Pulfrich effect in optometric practice,” Ophthalmic Physiol. Opt. 15, 425–429 (1995).
[Crossref]

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Interocular differences in visual latency induced by reduced-aperture monovision,” Ophthalmic Physiol. Opt. 33, 123–129 (2013).
[Crossref]

Ophthalmic Physiolog. Opt. (1)

D. A. Atchison, “Age-related paraxial schematic emmetropic eyes,” Ophthalmic Physiolog. Opt. 29, 58–64 (2009).
[Crossref]

Optom. Vis. Sci. (1)

E. Levinger, O. Trivizki, R. Pokroy, S. Levartovsky, G. Sholohov, and S. Levinger, “Monovision surgery in myopic presbyopes: visual function and satisfaction,” Optom. Vis. Sci. 90, 1092–1097(2013).
[Crossref]

PLoS One (1)

S. Plainis, D. Petratou, T. Giannakopoulou, H. Radhakrishnan, I. G. Pallikaris, and W. N. Charman, “Small-aperture monovision and the Pulfrich experience: absence of neural adaptation effects,” PLoS One 8, e75987 (2013).
[Crossref]

Surv. Ophthalmol. (2)

C. J. Diaper, “Pulfrich revisited,” Surv. Ophthalmol. 41, 493–499 (1997).
[Crossref]

D. Miller and R. Johnson, “Quantification of the pinhole effect,” Surv. Ophthalmol. 21, 347–350 (1977).
[Crossref]

Vision Res. (1)

D. M. Wolpert, R. C. Miall, B. Cumming, and S. J. Boniface, “Retinal adaptation of visual processing time delays,” Vision Res. 33, 1421–1430 (1993).
[Crossref]

Z. Med. Phys. (1)

T. Eppig, C. Spira, B. Seitz, N. Szentmary, and A. Langenbucher, “A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes,” Z. Med. Phys. 26, 159–167 (2016).
[Crossref]

Other (1)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 20, p. 227.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Ray tracing for the inferior visual field through model eyes with a 5 mm natural entrance pupil diameter and devices with fully opaque obscurations, for visual field angles of 0 and 80 deg: (a) a Kamra inlay, (b) a IC-8-type IOL placed 0.5 mm behind the aperture stop, and (c) an Xtrafocus placed 0.25 mm behind the aperture stop and an IOL a further 0.25 mm behind. The iris is represented by mid-blue lines, and the obscurations are represented by thick black lines. Note that the diameter of the incident ray bundle is 5 mm in all cases, but only those rays that pass through both the obscuration and the iris aperture are shown.
Fig. 2.
Fig. 2. Spot diagrams at the aperture stop for a model eye with a fully opaque Kamra corneal inlay for (a) a 3 mm and (b) a 5 mm natural entrance pupil. Visual field angles 0–80 deg in the vertical meridian. Note the difference in scales for (a) and (b).
Fig. 3.
Fig. 3. Spot diagrams at the aperture stop for a model eye with an IC-8-type IOL placed 0.5 mm behind the aperture stop for (a) a 3 mm and (b) a 5 mm natural entrance pupil. Visual field angles 0–80 deg in the vertical meridian. Note the difference in scales for (a) and (b).
Fig. 4.
Fig. 4. Transmittance at the effective stop, relative to the situation without obscuration, as a function of visual field angle for natural entrance pupil diameters ranging from 2 to 5 mm. (a) Eye with Kamra corneal inlay. The full curves (O) are for a fully opaque annulus, and the broken curves (PT) are for one with transmittance 5%. (b) Eye with IC-8-type IOL when the IOL is 0.5 mm behind the stop: full curves (O) are for a fully opaque IOL annulus, and the broken curves (PT) are for one with transmittance 2.75%. (c) Eye with IC-8-type IOL when the IOL is 1.0 mm behind the stop; other details as in (c). (d) Eyes with Xtrafocus and IOLs when the IOLs are 0.5 mm and 1.0 mm behind the stop. For the IOLs, unfocused light passing outside them is not included.

Tables (3)

Tables Icon

Table 1. Ocular Model with Kamra Inlaya

Tables Icon

Table 2. Ocular Model with IC-8-Type IOLa

Tables Icon

Table 3. Ocular Model with Xtrafocus and IOLa

Metrics