N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
T. Latychevskaia, “Reconstruction of missing information in diffraction patterns and holograms by iterative phase retrieval,” Opt. Commun. 452, 56–67 (2019).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Practical algorithms for simulation and reconstruction of digital in-line holograms,” Appl. Opt. 54, 2424–2434 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms,” Appl. Opt. 54, 3925–3932 (2015).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18, 22527–22544 (2010).
[Crossref]
T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]
N. Pavillon, C. Arfire, I. Bergoend, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Solution to the twin image in holography,” Phys. Rev. Lett. 98, 233901 (2007).
[Crossref]
L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).
[Crossref]
J. Miao and D. Sayre, “On possible extensions of x-ray crystallography through diffraction-pattern oversampling,” Acta Crystallogr. Sec. A 56, 596–605 (2000).
[Crossref]
J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]
R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]
G. Mollenstedt and M. Keller, “Elektroneninterfero metrisehe Messung des inneren Potentials,” Z. Phys. 148, 34–37 (1957).
[Crossref]
G. Mollenstedt and H. Duker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[Crossref]
J. A. Ratcliffe, “Some aspects of diffraction theory and their application to the ionosphere,” Reports on progress in physics 19, 188–267 (1956).
[Crossref]
D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London, Ser. A 1051, 454–487 (1949).
[Crossref]
D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]
O. Scherzer, “Ueber einige Fehler von Elektronenlinsen,” Z. Phys. 101, 593–603 (1936).
[Crossref]
L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).
[Crossref]
N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998).
[Crossref]
J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
G. Mollenstedt and H. Duker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Practical algorithms for simulation and reconstruction of digital in-line holograms,” Appl. Opt. 54, 2424–2434 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms,” Appl. Opt. 54, 3925–3932 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21, 7726–7733 (2013).
[Crossref]
T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18, 22527–22544 (2010).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17, 10697–10705 (2009).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Solution to the twin image in holography,” Phys. Rev. Lett. 98, 233901 (2007).
[Crossref]
T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]
D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London, Ser. A 1051, 454–487 (1949).
[Crossref]
D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]
D. Gabor, “Improvements in and relating to microscopy,” PatentGB685286 (December17, 1947).
D. Gabor, Nobel Lecture (1971).
R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]
J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
[Crossref]
G. Koren, D. Joyeux, and F. Polack, “Twin-image elimination in in-line holography of finite-support complex objects,” Opt. Lett. 16, 1979–1981 (1991).
[Crossref]
U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
G. Mollenstedt and M. Keller, “Elektroneninterfero metrisehe Messung des inneren Potentials,” Z. Phys. 148, 34–37 (1957).
[Crossref]
E. J. Kirkland, Advanced Computing in Electron Microscopy (2010).
J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]
T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]
G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
[Crossref]
G. Koren, D. Joyeux, and F. Polack, “Twin-image elimination in in-line holography of finite-support complex objects,” Opt. Lett. 16, 1979–1981 (1991).
[Crossref]
N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
T. Latychevskaia, “Reconstruction of missing information in diffraction patterns and holograms by iterative phase retrieval,” Opt. Commun. 452, 56–67 (2019).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms,” Appl. Opt. 54, 3925–3932 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Practical algorithms for simulation and reconstruction of digital in-line holograms,” Appl. Opt. 54, 2424–2434 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21, 7726–7733 (2013).
[Crossref]
T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18, 22527–22544 (2010).
[Crossref]
T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17, 10697–10705 (2009).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Solution to the twin image in holography,” Phys. Rev. Lett. 98, 233901 (2007).
[Crossref]
J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]
J. C. Li and P. Picart, Digital Holography (Wiley, 2012).
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]
L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).
[Crossref]
J. Miao and D. Sayre, “On possible extensions of x-ray crystallography through diffraction-pattern oversampling,” Acta Crystallogr. Sec. A 56, 596–605 (2000).
[Crossref]
J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]
J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
G. Mollenstedt and M. Keller, “Elektroneninterfero metrisehe Messung des inneren Potentials,” Z. Phys. 148, 34–37 (1957).
[Crossref]
G. Mollenstedt and H. Duker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[Crossref]
L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).
[Crossref]
P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[Crossref]
G. Pedrini, W. Osten, and Y. Zhang, “Wavefront reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[Crossref]
Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
[Crossref]
L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).
[Crossref]
P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[Crossref]
G. Pedrini, W. Osten, and Y. Zhang, “Wavefront reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[Crossref]
Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
[Crossref]
N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
J. C. Li and P. Picart, Digital Holography (Wiley, 2012).
G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
[Crossref]
G. Koren, D. Joyeux, and F. Polack, “Twin-image elimination in in-line holography of finite-support complex objects,” Opt. Lett. 16, 1979–1981 (1991).
[Crossref]
J. A. Ratcliffe, “Some aspects of diffraction theory and their application to the ionosphere,” Reports on progress in physics 19, 188–267 (1956).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
J. Miao and D. Sayre, “On possible extensions of x-ray crystallography through diffraction-pattern oversampling,” Acta Crystallogr. Sec. A 56, 596–605 (2000).
[Crossref]
J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]
J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998).
[Crossref]
O. Scherzer, “Ueber einige Fehler von Elektronenlinsen,” Z. Phys. 101, 593–603 (1936).
[Crossref]
P. Schiske, “Image reconstruction by means of focus series,” in Proceedings of the 4th European Regional Conference on Electron Microscopy (1968), p. 145.
U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
Z. Y. Li, L. Li, Y. Qin, G. B. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24, 21134–21146 (2016).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
G. Pedrini, W. Osten, and Y. Zhang, “Wavefront reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[Crossref]
Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
[Crossref]
Z. Y. Li, L. Li, Y. Qin, G. B. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24, 21134–21146 (2016).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
J. Miao and D. Sayre, “On possible extensions of x-ray crystallography through diffraction-pattern oversampling,” Acta Crystallogr. Sec. A 56, 596–605 (2000).
[Crossref]
J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
[Crossref]
P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Practical algorithms for simulation and reconstruction of digital in-line holograms,” Appl. Opt. 54, 2424–2434 (2015).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms,” Appl. Opt. 54, 3925–3932 (2015).
[Crossref]
J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. W. Miao, and M. Segev, “Phase retrieval with application to optical imaging,” IEEE Signal Process. Mag. 32, 87–109 (2015).
[Crossref]
G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
[Crossref]
J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998).
[Crossref]
G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159–165 (1987).
[Crossref]
J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]
D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]
T. Latychevskaia, “Reconstruction of missing information in diffraction patterns and holograms by iterative phase retrieval,” Opt. Commun. 452, 56–67 (2019).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17, 10697–10705 (2009).
[Crossref]
N. Pavillon, C. Arfire, I. Bergoend, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]
T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18, 22527–22544 (2010).
[Crossref]
T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21, 7726–7733 (2013).
[Crossref]
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
[Crossref]
Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
[Crossref]
Z. Y. Li, L. Li, Y. Qin, G. B. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24, 21134–21146 (2016).
[Crossref]
G. Pedrini, W. Osten, and Y. Zhang, “Wavefront reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[Crossref]
G. Koren, D. Joyeux, and F. Polack, “Twin-image elimination in in-line holography of finite-support complex objects,” Opt. Lett. 16, 1979–1981 (1991).
[Crossref]
R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
T. Latychevskaia and H.-W. Fink, “Solution to the twin image in holography,” Phys. Rev. Lett. 98, 233901 (2007).
[Crossref]
D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London, Ser. A 1051, 454–487 (1949).
[Crossref]
J. A. Ratcliffe, “Some aspects of diffraction theory and their application to the ionosphere,” Reports on progress in physics 19, 188–267 (1956).
[Crossref]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref]
N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. Rep. 9, 180 (2019).
[Crossref]
C. Guo, C. Shen, Q. Li, J. B. Tan, S. T. Liu, X. C. Kan, and Z. J. Liu, “Fast-converging iterative method based on weighted feedback for multi-distance phase retrieval,” Sci. Rep. 8, 6436 (2018).
[Crossref]
T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]
L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).
[Crossref]
G. Mollenstedt and H. Duker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[Crossref]
G. Mollenstedt and M. Keller, “Elektroneninterfero metrisehe Messung des inneren Potentials,” Z. Phys. 148, 34–37 (1957).
[Crossref]
O. Scherzer, “Ueber einige Fehler von Elektronenlinsen,” Z. Phys. 101, 593–603 (1936).
[Crossref]
D. Gabor, “Improvements in and relating to microscopy,” PatentGB685286 (December17, 1947).
P. Schiske, “Image reconstruction by means of focus series,” in Proceedings of the 4th European Regional Conference on Electron Microscopy (1968), p. 145.
J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
J. C. Li and P. Picart, Digital Holography (Wiley, 2012).
E. J. Kirkland, Advanced Computing in Electron Microscopy (2010).
D. Gabor, Nobel Lecture (1971).