Abstract

The scattering of light by a surface is described by the bidirectional reflectance distribution function (BRDF). Unfortunately, this function cannot be straightforwardly acquired or modeled. French researchers have proposed interesting contributions to the field, with several models and accurate experimental systems. For instance, the National Metrological Institute (LNE-CNAM) has implemented the best angular resolution goniospectrophotometer (0.015°). Modeling the BRDF has also been deeply studied in France, especially with the microfacet theory in recent years, a better understanding of the shadowing–masking function, new general distribution functions, visible normals, interfaced Lambertian microfacets, and analysis concerning light multiple reflections. This paper presents the state of the art regarding some significant French contributions in these fields.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient polarimetric BRDF model

Ingmar G. E. Renhorn, Tomas Hallberg, and Glenn D. Boreman
Opt. Express 23(24) 31253-31273 (2015)

Physically based reflectance model utilizing polarization measurement

Takayuki Nakano and Yasuhisa Tamagawa
Appl. Opt. 44(15) 2957-2962 (2005)

Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces

Samuel D. Butler, Stephen E. Nauyoks, and Michael A. Marciniak
Opt. Express 23(22) 29100-29112 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Bouguer, Traité d’optique sur la gradation de la lumière (M. l’abbé de La Caille, 1760).
  2. P. Bouguer, 1729 essai d’optique sur la gradation de la lumière (Jombert, 1921), reprinted in Les maîtres de la pensée scientifique.
  3. W. K. Middleton, “The beginnings of photometry,” Appl. Opt. 10, 2592–2594 (1971).
    [Crossref]
  4. J. Lambert, Photometria, sive de Mensura et gradibus luminis, colorum et umbrae (W. Engelmann, 1760).
  5. A. Kienle and F. Foschum, “250 years Lambert surface: does it really exist?” Opt. Express 19, 3881–3889 (2011).
    [Crossref]
  6. A. J. Fresnel, Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée (Académie des sciences, 1823).
  7. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).
  8. A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
    [Crossref]
  9. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
    [Crossref]
  10. J. F. Blinn, “Models of light reflection for computer synthesized pictures,” SIGGRAPH Comput. Graph. 11, 192–198 (1977).
    [Crossref]
  11. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surface,” J. Opt. Soc. Am. 57, 1105–1114 (1967).
    [Crossref]
  12. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
    [Crossref]
  13. J. Dorsey, H. Rushmeier, and F. X. Sillion, Digital Modeling of Material Appearance, Computer Graphics (Morgan Kaufmann/Elsevier, 2007).
  14. L. Simonot and P. Boulenguez, Quand la matière diffuse la lumière (Presses des MINES, 2019).
  15. Commission Internationale de l’Eclairage, “International Lighting Vocabulary, (Central Bureau of the CIE, 2011).
  16. D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
    [Crossref]
  17. A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
    [Crossref]
  18. G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, 58800T (2005).
    [Crossref]
  19. T. Leroux, “Fast contrast vs viewing angle measurements of LCDs,” in Eurodisplay, Strasbourg, France (1993), Vol. 447.
  20. T. Leroux, “New uniformity measurement method for LCD panels,” Proc. SPIE 3636, 191–198 (1999).
    [Crossref]
  21. O. Moreau and T. Leroux, “Fast and accurate measurement of liquid crystal tilt bias angle with the ELDIM EZContrast system,” Proc. SPIE 3826, 236–241 (1999).
    [Crossref]
  22. M. H. Madsen, P. Boher, P.-E. Hansen, and J. F. Jørgensen, “Alignment-free characterization of 2D gratings,” Appl. Opt. 55, 317–322 (2016).
    [Crossref]
  23. F. Vienot and G. Obein, “Is gloss recognized as a surface property?” in 1st International Workshop on Materials and Sensations, Pau, France (2004), Vol. 3826, pp. 27–29.
  24. G. Obein and F. Vienot, “Modelling the BRDF of a series of matt to glossy black samples,” in Proceedings of the CIE Expert Symposium on Visual Appearance (2007), Vol. CIE x032, pp. 67–74.
  25. G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.
  26. G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.
  27. “xDReflect,” https://www.xdreflect.eu/ .
  28. “BiRD,” https://www.birdproject.eu/ .
  29. C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
    [Crossref]
  30. F. X. Sillion, J. Arvo, S. Westin, and D. P. Greenberg, “A global illumination solution for general reflectance distributions,” in SIGGRAPH’91 Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, Nevada, USA (ACM Press, 1991), pp. 187–196.
  31. E. Languenou, K. Bouatouch, and P. Tellier, “An adaptive discretization method for radiosity,” Comput. Graph. Forum 11, 205–216 (1992).
    [Crossref]
  32. S. N. Pattanaik and K. Bouatouch, “Fast wavelet radiosity method,” Comput. Graph. Forum 13, 407–420 (1994).
    [Crossref]
  33. E. Languénou, K. Bouatouch, and M. Chelle, “Global illumination in presence of participating media with general properties,” in Photorealistic Rendering Techniques, G. Sakas, S. Müller, and P. Shirley, eds. (Springer, 1995), pp. 71–86.
  34. F. Perez-Cazorla, X. Pueyo, and F. X. Sillion, “Global illumination techniques for the simulation of participating media,” in Proceedings of the Eighth Eurographics Workshop on Rendering, Saint Etienne, France, 1997.
  35. M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
    [Crossref]
  36. J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
    [Crossref]
  37. F. X. Sillion, “A unified hierarchical algorithm for global illumination with scattering volumes and object clusters,” IEEE Trans. Vis. Comput. Graphics 1, 240–254 (1995).
    [Crossref]
  38. F. X. Sillion and C. Puech, Radiosity and Global Illumination (Morgan Kaufmann, 1994).
  39. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference on Rendering Techniques (Eurographics Association, 2007), pp. 195–206.
  40. L. Simonot and G. Obein, “Geometrical considerations in analyzing isotropic or anisotropic surface reflections,” Appl. Opt. 46, 2615–2623 (2007).
    [Crossref]
  41. S. M. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Eurographics Workshop on Rendering (Springer, 1998), pp. 11–22.
  42. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces (Pergamon, 1963).
  43. B. Smith, “Geometrical shadowing of a random rough surface,” IEEE Trans. Antennas Propag. 15, 668–671 (1967).
    [Crossref]
  44. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
    [Crossref]
  45. C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph Forum 13, 233–246 (1994).
    [Crossref]
  46. C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
    [Crossref]
  47. R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
    [Crossref]
  48. P. Callet, “Pertinent data for modelling pigmented materials in realistic rendering,” Comput. Graph. Forum 15, 119–127 (1996).
    [Crossref]
  49. P. Callet, Couleur-Lumière, Couleur-Matière : Interaction Lumière-Matière et Synthèse d’Images (Diderot multimédia, 1998).
  50. T. S. Trowbridge and K. P. Reitz, “Average irregularity representation of a rough surface for ray reflection,” J. Opt. Soc. Am. 65, 531–536 (1975).
    [Crossref]
  51. M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
    [Crossref]
  52. L. Belcour, P. Barla, and R. Pacanowski, “ALTA: a BRDF analysis library,” in Eurographics Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2014).
  53. M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
    [Crossref]
  54. M. Ribardière, D. Meneveaux, B. Bringier, and L. Simonot, “Appearance of interfaced Lambertian microfacets, using STD distribution,” in Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2017).
  55. A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
    [Crossref]
  56. M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
    [Crossref]
  57. C. Bourlier, G. Berginc, and J. Saillard, “One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations,” IEEE Trans. Antennas Propag. 50, 312–324 (2002).
    [Crossref]
  58. E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” J. Comput. Graph. Tech. 3, 48–107 (2014).
  59. M. Ashikhmin, S. Premože, and P. Shirley, “A microfacet-based BRDF generator,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp. 65–74.
  60. E. Heitz and E. d’Eon, “Importance sampling microfacet-based BSDFs using the distribution of visible normals,” Comput. Graph. Forum 33, 103–112 (2014).
    [Crossref]
  61. E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
    [Crossref]
  62. J. Dupuy, E. Heitz, and E. d’Eon, “Additional progress towards the unification of microfacet and microflake theories,” in Eurographics Symposium on Rendering (2016), pp. 55–63.
  63. E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface,” Waves Random Complex Media 23, 318–335 (2013).
    [Crossref]
  64. E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
    [Crossref]
  65. D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.
  66. D. Saint-Pierre, L. Simonot, and M. Hébert, “Reflectance computation for a specular only V-cavity,” in International Workshop on Computational Color Imaging (Springer, 2019), pp. 289–303.
  67. M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
    [Crossref]
  68. M. Elias, L. Simonot, and M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
    [Crossref]
  69. L. Simonot, “Photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets,” Appl. Opt. 48, 5793–5801 (2009).
    [Crossref]
  70. D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
    [Crossref]
  71. W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
    [Crossref]
  72. T. Zeltner and W. Jakob, “The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance,” ACM Trans. Graph. 37, 74 (2018).
    [Crossref]
  73. L. Belcour, “Efficient rendering of layered materials using an atomic decomposition with statistical operators,” ACM Trans. Graph. 37, 73 (2017).
    [Crossref]
  74. L. Simonot, R. D. Hersch, M. Hébert, and S. Mazauric, “Multilayer four-flux matrix model accounting for directional-diffuse light transfers,” Appl. Opt. 55, 27–37 (2016).
    [Crossref]
  75. L. Belcour and P. Barla, “A practical extension to microfacet theory for the modeling of varying iridescence,” ACM Trans. Graph. 36, 65 (2017).
    [Crossref]
  76. N. Holzschuch and R. Pacanowski, “A two-scale microfacet reflectance model combining reflection and diffraction,” ACM Trans. Graph. 36, 66 (2017).
    [Crossref]
  77. A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction effects detection for HDR image-based measurements,” Opt. Express 25, 27146–27164 (2017).
    [Crossref]
  78. A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction removal in an image-based BRDF measurement setup,” in Electronic Imaging Material Appearance, Burlingame, California, USA, 2018, pp. 1–6.
  79. G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multi-scale assemblage for procedural texturing,” Comput. Graph. Forum 31, 2117–2126 (2012).
    [Crossref]
  80. G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multiple kernels noise for improved procedural texturing,” Vis. Comput. 28, 679–689 (2012).
    [Crossref]
  81. Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
    [Crossref]
  82. G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
    [Crossref]
  83. G. Gilet and J.-M. Dischler, “An image-based approach for stochastic volumetric and procedural details,” Comput. Graph. Forum 29, 1411–1419 (2010).
    [Crossref]
  84. N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).
  85. S. Mérillou and D. Ghazanfarpour, “A survey of aging and weathering phenomena in computer graphics,” Comput. Graph. 32, 159–174 (2008).
    [Crossref]
  86. N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
    [Crossref]
  87. C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
    [Crossref]
  88. B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of scratched materials using a structured SV-BRDF model,” ACM Trans. Graph. 35, 57 (2016).
    [Crossref]
  89. J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM, 1986), pp. 143–150.
  90. E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM/Addison-Wesley, 1997), pp. 117–126.
  91. B. Mercier, D. Meneveaux, and A. Fournier, “A framework for automatically recovering object shape, reflectance and light sources from calibrated images,” Int. J. Comput. Vis. 73, 77–93 (2007).
    [Crossref]
  92. S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
    [Crossref]
  93. N. Noé and B. Péroche, “Hierarchical reconstruction of BRDFs using locally supported functions,” Comput. Graph. Forum 19, 173–184 (2000).
    [Crossref]
  94. L. Claustres, M. Paulin, and Y. Boucher, “A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering,” Vis. Comput. 22, 221–237 (2006).
    [Crossref]
  95. L. Claustres, L. Barthe, and M. Paulin, “Wavelet encoding of BRDFs for real-time rendering,” in Proceedings of Graphics Interface (GI) (ACM, 2007), pp. 169–176.
  96. C. Soler, M. Bagher, and D. Nowrouzezahrai, “Efficient and accurate spherical Kernel integrals using isotropic decomposition,” ACM Trans. Graph. 34, 161 (2015).
    [Crossref]
  97. C. Soler, K. Subr, and D. Nowrouzezahrai, “A versatile parameterization for measured material manifolds,” Comput. Graph. Forum 37, 135–144 (2018).
    [Crossref]
  98. J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
    [Crossref]
  99. L. Belcour, K. Bala, and C. Soler, “A local frequency analysis of light scattering and absorption,” ACM Trans. Graph. 33, 163 (2014).
    [Crossref]
  100. P. Barla, L. Belcour, and R. Pacanowski, “In praise of an alternative BRDF parametrization,” in Material Appearance Modeling (2015).
  101. J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving parameterization for spherical distributions,” ACM Trans. Graph. 36, 139 (2017).
    [Crossref]
  102. J. Dupuy and W. Jakob, “An adaptive parameterization for efficient material acquisition and rendering,” ACM Trans. Graph. 37, 274 (2018).
    [Crossref]
  103. J. Zaninetti, X. Serpaggi, and B. Péroche, “A vector approach for global illumination in ray tracing,” Comput. Graph. Forum 17, 149–158 (1998).
    [Crossref]
  104. E. Veach, “Robust Monte Carlo methods for light transport simulation,” Ph.D. thesis (Stanford University, 1998).
  105. G. J. Ward, “The radiance lighting simulation and rendering system,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 459–472.
  106. P. Gautron, K. Bouatouch, and S. Pattanaik, “Temporal radiance caching,” in ACM SIGGRAPH 2006 Sketches (ACM, 2006).
  107. J. Krivanek and P. Gautron, Practical Global Illumination with Irradiance Caching (Morgan and Claypool, 2009).
  108. M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
    [Crossref]
  109. J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
    [Crossref]
  110. X. Chermain, F. Claux, and S. Mérillou, “A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps,” Vis. Comput. 36, 1–11 (2018).
    [Crossref]
  111. B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
    [Crossref]
  112. P. Barla, R. Pacanowski, and P. Vangorp, “A composite BRDF model for hazy gloss,” Comput. Graph. Forum 37, 55–66 (2018).
    [Crossref]
  113. B. K. Horn, “Shape from shading: a method for obtaining the shape of a smooth opaque object from one view,” Technical Report (Massachusetts Institute of Technology, 1970).
  114. E. Prados and O. Faugeras, “Shape from shading: a well-posed problem?” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, USA, IEEE, 2005, pp. 870–877.
  115. F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
    [Crossref]
  116. R. Woodham, “Photometric method for determining surface orientation from multiples images,” Opt. Eng. 19, 139–144 (1980).
    [Crossref]
  117. C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.
  118. B. Bringier, D. Helbert, and M. Khoudeir, “Photometric reconstruction of a dynamic textured surface from just one color image acquisition,” J. Opt. Soc. Am. A 25, 566–574 (2008).
    [Crossref]
  119. Z. Jankó, A. Delaunoy, and E. Prados, “Colour dynamic photometric stereo for textured surfaces,” in Asian Conference on Computer Vision (ACCV), R. Kimmel, R. Klette, and A. Sugimoto, eds. (Springer, 2011), pp. 55–66.
  120. S. Barsky and M. Petrou, “The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003).
    [Crossref]
  121. B. Bringier, A. Bony, and M. Khoudeir, “Specularity and shadow detection for the multisource photometric reconstruction of a textured surface,” J. Opt. Soc. Am. A 29, 11–21 (2012).
    [Crossref]
  122. R. Mecca and M. Falcone, “Uniqueness and approximation of a photometric shape-from-shading model,” SIAM J. Imag. Sci. 6, 616–659 (2013).
    [Crossref]
  123. Y. Queau, R. Mecca, and J.-D. Durou, “Unbiased photometric stereo for colored surfaces: a variational approach,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
  124. K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
    [Crossref]
  125. J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
    [Crossref]

2019 (1)

M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
[Crossref]

2018 (7)

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

T. Zeltner and W. Jakob, “The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance,” ACM Trans. Graph. 37, 74 (2018).
[Crossref]

C. Soler, K. Subr, and D. Nowrouzezahrai, “A versatile parameterization for measured material manifolds,” Comput. Graph. Forum 37, 135–144 (2018).
[Crossref]

J. Dupuy and W. Jakob, “An adaptive parameterization for efficient material acquisition and rendering,” ACM Trans. Graph. 37, 274 (2018).
[Crossref]

X. Chermain, F. Claux, and S. Mérillou, “A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps,” Vis. Comput. 36, 1–11 (2018).
[Crossref]

P. Barla, R. Pacanowski, and P. Vangorp, “A composite BRDF model for hazy gloss,” Comput. Graph. Forum 37, 55–66 (2018).
[Crossref]

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

2017 (7)

J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving parameterization for spherical distributions,” ACM Trans. Graph. 36, 139 (2017).
[Crossref]

G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
[Crossref]

L. Belcour, “Efficient rendering of layered materials using an atomic decomposition with statistical operators,” ACM Trans. Graph. 37, 73 (2017).
[Crossref]

L. Belcour and P. Barla, “A practical extension to microfacet theory for the modeling of varying iridescence,” ACM Trans. Graph. 36, 65 (2017).
[Crossref]

N. Holzschuch and R. Pacanowski, “A two-scale microfacet reflectance model combining reflection and diffraction,” ACM Trans. Graph. 36, 66 (2017).
[Crossref]

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction effects detection for HDR image-based measurements,” Opt. Express 25, 27146–27164 (2017).
[Crossref]

M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
[Crossref]

2016 (6)

M. H. Madsen, P. Boher, P.-E. Hansen, and J. F. Jørgensen, “Alignment-free characterization of 2D gratings,” Appl. Opt. 55, 317–322 (2016).
[Crossref]

L. Simonot, R. D. Hersch, M. Hébert, and S. Mazauric, “Multilayer four-flux matrix model accounting for directional-diffuse light transfers,” Appl. Opt. 55, 27–37 (2016).
[Crossref]

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
[Crossref]

B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of scratched materials using a structured SV-BRDF model,” ACM Trans. Graph. 35, 57 (2016).
[Crossref]

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

2015 (3)

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

C. Soler, M. Bagher, and D. Nowrouzezahrai, “Efficient and accurate spherical Kernel integrals using isotropic decomposition,” ACM Trans. Graph. 34, 161 (2015).
[Crossref]

E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
[Crossref]

2014 (7)

W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
[Crossref]

L. Belcour, K. Bala, and C. Soler, “A local frequency analysis of light scattering and absorption,” ACM Trans. Graph. 33, 163 (2014).
[Crossref]

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” J. Comput. Graph. Tech. 3, 48–107 (2014).

E. Heitz and E. d’Eon, “Importance sampling microfacet-based BSDFs using the distribution of visible normals,” Comput. Graph. Forum 33, 103–112 (2014).
[Crossref]

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

2013 (4)

R. Mecca and M. Falcone, “Uniqueness and approximation of a photometric shape-from-shading model,” SIAM J. Imag. Sci. 6, 616–659 (2013).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface,” Waves Random Complex Media 23, 318–335 (2013).
[Crossref]

2012 (6)

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multi-scale assemblage for procedural texturing,” Comput. Graph. Forum 31, 2117–2126 (2012).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multiple kernels noise for improved procedural texturing,” Vis. Comput. 28, 679–689 (2012).
[Crossref]

N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
[Crossref]

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

B. Bringier, A. Bony, and M. Khoudeir, “Specularity and shadow detection for the multisource photometric reconstruction of a textured surface,” J. Opt. Soc. Am. A 29, 11–21 (2012).
[Crossref]

2011 (1)

2010 (3)

G. Gilet and J.-M. Dischler, “An image-based approach for stochastic volumetric and procedural details,” Comput. Graph. Forum 29, 1411–1419 (2010).
[Crossref]

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

2009 (1)

2008 (3)

S. Mérillou and D. Ghazanfarpour, “A survey of aging and weathering phenomena in computer graphics,” Comput. Graph. 32, 159–174 (2008).
[Crossref]

B. Bringier, D. Helbert, and M. Khoudeir, “Photometric reconstruction of a dynamic textured surface from just one color image acquisition,” J. Opt. Soc. Am. A 25, 566–574 (2008).
[Crossref]

F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
[Crossref]

2007 (2)

B. Mercier, D. Meneveaux, and A. Fournier, “A framework for automatically recovering object shape, reflectance and light sources from calibrated images,” Int. J. Comput. Vis. 73, 77–93 (2007).
[Crossref]

L. Simonot and G. Obein, “Geometrical considerations in analyzing isotropic or anisotropic surface reflections,” Appl. Opt. 46, 2615–2623 (2007).
[Crossref]

2006 (2)

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

L. Claustres, M. Paulin, and Y. Boucher, “A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering,” Vis. Comput. 22, 221–237 (2006).
[Crossref]

2005 (2)

G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, 58800T (2005).
[Crossref]

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
[Crossref]

2004 (1)

C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
[Crossref]

2003 (1)

S. Barsky and M. Petrou, “The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003).
[Crossref]

2002 (1)

C. Bourlier, G. Berginc, and J. Saillard, “One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations,” IEEE Trans. Antennas Propag. 50, 312–324 (2002).
[Crossref]

2001 (1)

M. Elias, L. Simonot, and M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[Crossref]

2000 (2)

N. Noé and B. Péroche, “Hierarchical reconstruction of BRDFs using locally supported functions,” Comput. Graph. Forum 19, 173–184 (2000).
[Crossref]

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

1999 (2)

T. Leroux, “New uniformity measurement method for LCD panels,” Proc. SPIE 3636, 191–198 (1999).
[Crossref]

O. Moreau and T. Leroux, “Fast and accurate measurement of liquid crystal tilt bias angle with the ELDIM EZContrast system,” Proc. SPIE 3826, 236–241 (1999).
[Crossref]

1998 (1)

J. Zaninetti, X. Serpaggi, and B. Péroche, “A vector approach for global illumination in ray tracing,” Comput. Graph. Forum 17, 149–158 (1998).
[Crossref]

1996 (1)

P. Callet, “Pertinent data for modelling pigmented materials in realistic rendering,” Comput. Graph. Forum 15, 119–127 (1996).
[Crossref]

1995 (2)

F. X. Sillion, “A unified hierarchical algorithm for global illumination with scattering volumes and object clusters,” IEEE Trans. Vis. Comput. Graphics 1, 240–254 (1995).
[Crossref]

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[Crossref]

1994 (3)

C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph Forum 13, 233–246 (1994).
[Crossref]

C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
[Crossref]

S. N. Pattanaik and K. Bouatouch, “Fast wavelet radiosity method,” Comput. Graph. Forum 13, 407–420 (1994).
[Crossref]

1992 (1)

E. Languenou, K. Bouatouch, and P. Tellier, “An adaptive discretization method for radiosity,” Comput. Graph. Forum 11, 205–216 (1992).
[Crossref]

1991 (1)

X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
[Crossref]

1984 (1)

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
[Crossref]

1982 (1)

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

1980 (1)

R. Woodham, “Photometric method for determining surface orientation from multiples images,” Opt. Eng. 19, 139–144 (1980).
[Crossref]

1977 (1)

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” SIGGRAPH Comput. Graph. 11, 192–198 (1977).
[Crossref]

1975 (2)

1971 (1)

1967 (2)

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surface,” J. Opt. Soc. Am. 57, 1105–1114 (1967).
[Crossref]

B. Smith, “Geometrical shadowing of a random rough surface,” IEEE Trans. Antennas Propag. 15, 668–671 (1967).
[Crossref]

Allègre, R.

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

Arvo, J.

F. X. Sillion, J. Arvo, S. Westin, and D. P. Greenberg, “A global illumination solution for general reflectance distributions,” in SIGGRAPH’91 Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, Nevada, USA (ACM Press, 1991), pp. 187–196.

Ashikhmin, M.

M. Ashikhmin, S. Premože, and P. Shirley, “A microfacet-based BRDF generator,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp. 65–74.

Aveneau, L.

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

Bagher, M.

C. Soler, M. Bagher, and D. Nowrouzezahrai, “Efficient and accurate spherical Kernel integrals using isotropic decomposition,” ACM Trans. Graph. 34, 161 (2015).
[Crossref]

Bagher, M. M.

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

Bala, K.

L. Belcour, K. Bala, and C. Soler, “A local frequency analysis of light scattering and absorption,” ACM Trans. Graph. 33, 163 (2014).
[Crossref]

Baret, F.

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

Barla, P.

P. Barla, R. Pacanowski, and P. Vangorp, “A composite BRDF model for hazy gloss,” Comput. Graph. Forum 37, 55–66 (2018).
[Crossref]

L. Belcour and P. Barla, “A practical extension to microfacet theory for the modeling of varying iridescence,” ACM Trans. Graph. 36, 65 (2017).
[Crossref]

B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of scratched materials using a structured SV-BRDF model,” ACM Trans. Graph. 35, 57 (2016).
[Crossref]

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

P. Barla, L. Belcour, and R. Pacanowski, “In praise of an alternative BRDF parametrization,” in Material Appearance Modeling (2015).

L. Belcour, P. Barla, and R. Pacanowski, “ALTA: a BRDF analysis library,” in Eurographics Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2014).

Barsky, S.

S. Barsky and M. Petrou, “The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003).
[Crossref]

Barthe, L.

L. Claustres, L. Barthe, and M. Paulin, “Wavelet encoding of BRDFs for real-time rendering,” in Proceedings of Graphics Interface (GI) (ACM, 2007), pp. 169–176.

Battaile, B.

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
[Crossref]

Beckmann, P.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces (Pergamon, 1963).

Belcour, L.

L. Belcour, “Efficient rendering of layered materials using an atomic decomposition with statistical operators,” ACM Trans. Graph. 37, 73 (2017).
[Crossref]

L. Belcour and P. Barla, “A practical extension to microfacet theory for the modeling of varying iridescence,” ACM Trans. Graph. 36, 65 (2017).
[Crossref]

J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving parameterization for spherical distributions,” ACM Trans. Graph. 36, 139 (2017).
[Crossref]

L. Belcour, K. Bala, and C. Soler, “A local frequency analysis of light scattering and absorption,” ACM Trans. Graph. 33, 163 (2014).
[Crossref]

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

L. Belcour, P. Barla, and R. Pacanowski, “ALTA: a BRDF analysis library,” in Eurographics Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2014).

P. Barla, L. Belcour, and R. Pacanowski, “In praise of an alternative BRDF parametrization,” in Material Appearance Modeling (2015).

Berginc, G.

C. Bourlier, G. Berginc, and J. Saillard, “One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations,” IEEE Trans. Antennas Propag. 50, 312–324 (2002).
[Crossref]

Blinn, J. F.

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” SIGGRAPH Comput. Graph. 11, 192–198 (1977).
[Crossref]

Boher, P.

Bony, A.

Bosch, C.

C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
[Crossref]

Bouatouch, K.

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
[Crossref]

S. N. Pattanaik and K. Bouatouch, “Fast wavelet radiosity method,” Comput. Graph. Forum 13, 407–420 (1994).
[Crossref]

E. Languenou, K. Bouatouch, and P. Tellier, “An adaptive discretization method for radiosity,” Comput. Graph. Forum 11, 205–216 (1992).
[Crossref]

E. Languénou, K. Bouatouch, and M. Chelle, “Global illumination in presence of participating media with general properties,” in Photorealistic Rendering Techniques, G. Sakas, S. Müller, and P. Shirley, eds. (Springer, 1995), pp. 71–86.

P. Gautron, K. Bouatouch, and S. Pattanaik, “Temporal radiance caching,” in ACM SIGGRAPH 2006 Sketches (ACM, 2006).

Boucher, Y.

L. Claustres, M. Paulin, and Y. Boucher, “A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering,” Vis. Comput. 22, 221–237 (2006).
[Crossref]

Bouguer, P.

P. Bouguer, Traité d’optique sur la gradation de la lumière (M. l’abbé de La Caille, 1760).

P. Bouguer, 1729 essai d’optique sur la gradation de la lumière (Jombert, 1921), reprinted in Les maîtres de la pensée scientifique.

Boulenguez, P.

L. Simonot and P. Boulenguez, Quand la matière diffuse la lumière (Presses des MINES, 2019).

Bourlier, C.

E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface,” Waves Random Complex Media 23, 318–335 (2013).
[Crossref]

C. Bourlier, G. Berginc, and J. Saillard, “One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations,” IEEE Trans. Antennas Propag. 50, 312–324 (2002).
[Crossref]

Bousquet, R.

G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, 58800T (2005).
[Crossref]

Bringier, B.

M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
[Crossref]

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
[Crossref]

B. Bringier, A. Bony, and M. Khoudeir, “Specularity and shadow detection for the multisource photometric reconstruction of a textured surface,” J. Opt. Soc. Am. A 29, 11–21 (2012).
[Crossref]

B. Bringier, D. Helbert, and M. Khoudeir, “Photometric reconstruction of a dynamic textured surface from just one color image acquisition,” J. Opt. Soc. Am. A 25, 566–574 (2008).
[Crossref]

M. Ribardière, D. Meneveaux, B. Bringier, and L. Simonot, “Appearance of interfaced Lambertian microfacets, using STD distribution,” in Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2017).

Brostow, G. J.

C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.

Callet, P.

P. Callet, “Pertinent data for modelling pigmented materials in realistic rendering,” Comput. Graph. Forum 15, 119–127 (1996).
[Crossref]

P. Callet, Couleur-Lumière, Couleur-Matière : Interaction Lumière-Matière et Synthèse d’Images (Diderot multimédia, 1998).

Campos, J.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Cani, M.-P.

G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
[Crossref]

Carré, S.

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

Castan, F.

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

Celis, O. S.

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

Chelle, M.

E. Languénou, K. Bouatouch, and M. Chelle, “Global illumination in presence of participating media with general properties,” in Photorealistic Rendering Techniques, G. Sakas, S. Müller, and P. Shirley, eds. (Springer, 1995), pp. 71–86.

Chermain, X.

X. Chermain, F. Claux, and S. Mérillou, “A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps,” Vis. Comput. 36, 1–11 (2018).
[Crossref]

Cipolla, R.

C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.

Claustres, L.

L. Claustres, M. Paulin, and Y. Boucher, “A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering,” Vis. Comput. 22, 221–237 (2006).
[Crossref]

L. Claustres, L. Barthe, and M. Paulin, “Wavelet encoding of BRDFs for real-time rendering,” in Proceedings of Graphics Interface (GI) (ACM, 2007), pp. 169–176.

Claux, F.

X. Chermain, F. Claux, and S. Mérillou, “A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps,” Vis. Comput. 36, 1–11 (2018).
[Crossref]

Comar, A.

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

Cook, R. L.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

Corróns, A.

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Courteille, F.

F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
[Crossref]

Crassin, C.

E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
[Crossref]

Cremers, D.

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

Crouzil, A.

F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
[Crossref]

Cuyt, A.

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

d’Eon, E.

E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
[Crossref]

E. Heitz and E. d’Eon, “Importance sampling microfacet-based BSDFs using the distribution of visible normals,” Comput. Graph. Forum 33, 103–112 (2014).
[Crossref]

W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
[Crossref]

J. Dupuy, E. Heitz, and E. d’Eon, “Additional progress towards the unification of microfacet and microflake theories,” in Eurographics Symposium on Rendering (2016), pp. 55–63.

Dachsbacher, C.

E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
[Crossref]

E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
[Crossref]

de Solana, B.

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

Deeb, R.

D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.

Delaunoy, A.

Z. Jankó, A. Delaunoy, and E. Prados, “Colour dynamic photometric stereo for textured surfaces,” in Asian Conference on Computer Vision (ACCV), R. Kimmel, R. Klette, and A. Sugimoto, eds. (Springer, 2011), pp. 55–66.

Dischler, J.

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

Dischler, J.-M.

G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multi-scale assemblage for procedural texturing,” Comput. Graph. Forum 31, 2117–2126 (2012).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multiple kernels noise for improved procedural texturing,” Vis. Comput. 28, 679–689 (2012).
[Crossref]

G. Gilet and J.-M. Dischler, “An image-based approach for stochastic volumetric and procedural details,” Comput. Graph. Forum 29, 1411–1419 (2010).
[Crossref]

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).

Dorsey, J.

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

J. Dorsey, H. Rushmeier, and F. X. Sillion, Digital Modeling of Material Appearance, Computer Graphics (Morgan Kaufmann/Elsevier, 2007).

Drettakis, G.

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

Dupuy, J.

J. Dupuy and W. Jakob, “An adaptive parameterization for efficient material acquisition and rendering,” ACM Trans. Graph. 37, 274 (2018).
[Crossref]

J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving parameterization for spherical distributions,” ACM Trans. Graph. 36, 139 (2017).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

J. Dupuy, E. Heitz, and E. d’Eon, “Additional progress towards the unification of microfacet and microflake theories,” in Eurographics Symposium on Rendering (2016), pp. 55–63.

Durou, J.-D.

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
[Crossref]

Y. Queau, R. Mecca, and J.-D. Durou, “Unbiased photometric stereo for colored surfaces: a variational approach,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

Elias, M.

M. Elias, L. Simonot, and M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[Crossref]

Falcone, M.

R. Mecca and M. Falcone, “Uniqueness and approximation of a photometric shape-from-shading model,” SIAM J. Imag. Sci. 6, 616–659 (2013).
[Crossref]

Faugeras, O.

E. Prados and O. Faugeras, “Shape from shading: a well-posed problem?” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, USA, IEEE, 2005, pp. 870–877.

Ferrero, A.

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Flys, O.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

Fontecha, J. L.

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Foo, S.-C.

E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM/Addison-Wesley, 1997), pp. 117–126.

Foschum, F.

Fournier, A.

B. Mercier, D. Meneveaux, and A. Fournier, “A framework for automatically recovering object shape, reflectance and light sources from calibrated images,” Int. J. Comput. Vis. 73, 77–93 (2007).
[Crossref]

Fresnel, A. J.

A. J. Fresnel, Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée (Académie des sciences, 1823).

Galin, E.

N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
[Crossref]

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).

Gautron, P.

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
[Crossref]

J. Krivanek and P. Gautron, Practical Global Illumination with Irradiance Caching (Morgan and Claypool, 2009).

P. Gautron, K. Bouatouch, and S. Pattanaik, “Temporal radiance caching,” in ACM SIGGRAPH 2006 Sketches (ACM, 2006).

Ged, G.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.

Ghazanfarpour, D.

N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multiple kernels noise for improved procedural texturing,” Vis. Comput. 28, 679–689 (2012).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multi-scale assemblage for procedural texturing,” Comput. Graph. Forum 31, 2117–2126 (2012).
[Crossref]

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

S. Mérillou and D. Ghazanfarpour, “A survey of aging and weathering phenomena in computer graphics,” Comput. Graph. 32, 159–174 (2008).
[Crossref]

C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
[Crossref]

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).

Gilet, G.

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multiple kernels noise for improved procedural texturing,” Vis. Comput. 28, 679–689 (2012).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multi-scale assemblage for procedural texturing,” Comput. Graph. Forum 31, 2117–2126 (2012).
[Crossref]

G. Gilet and J.-M. Dischler, “An image-based approach for stochastic volumetric and procedural details,” Comput. Graph. Forum 29, 1411–1419 (2010).
[Crossref]

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).

Ginsberg, I. W.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).

Goral, C. M.

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
[Crossref]

Granier, X.

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

Greenberg, D. P.

X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
[Crossref]

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
[Crossref]

F. X. Sillion, J. Arvo, S. Westin, and D. P. Greenberg, “A global illumination solution for general reflectance distributions,” in SIGGRAPH’91 Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, Nevada, USA (ACM Press, 1991), pp. 187–196.

E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM/Addison-Wesley, 1997), pp. 117–126.

Grusemann, U.

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Guennebaud, G.

B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of scratched materials using a structured SV-BRDF model,” ACM Trans. Graph. 35, 57 (2016).
[Crossref]

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

Guingo, G.

G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
[Crossref]

Gurdjos, P.

F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
[Crossref]

Hanika, J.

E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
[Crossref]

Hansen, P.-E.

He, X. D.

X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
[Crossref]

Hébert, M.

L. Simonot, R. D. Hersch, M. Hébert, and S. Mazauric, “Multilayer four-flux matrix model accounting for directional-diffuse light transfers,” Appl. Opt. 55, 27–37 (2016).
[Crossref]

D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.

D. Saint-Pierre, L. Simonot, and M. Hébert, “Reflectance computation for a specular only V-cavity,” in International Workshop on Computational Color Imaging (Springer, 2019), pp. 289–303.

Hegedus, R.

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction effects detection for HDR image-based measurements,” Opt. Express 25, 27146–27164 (2017).
[Crossref]

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction removal in an image-based BRDF measurement setup,” in Electronic Imaging Material Appearance, Burlingame, California, USA, 2018, pp. 1–6.

Heitz, E.

J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving parameterization for spherical distributions,” ACM Trans. Graph. 36, 139 (2017).
[Crossref]

E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
[Crossref]

E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” J. Comput. Graph. Tech. 3, 48–107 (2014).

E. Heitz and E. d’Eon, “Importance sampling microfacet-based BSDFs using the distribution of visible normals,” Comput. Graph. Forum 33, 103–112 (2014).
[Crossref]

E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface,” Waves Random Complex Media 23, 318–335 (2013).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

J. Dupuy, E. Heitz, and E. d’Eon, “Additional progress towards the unification of microfacet and microflake theories,” in Eurographics Symposium on Rendering (2016), pp. 55–63.

Helbert, D.

Hernandez, C.

C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.

Hersch, R. D.

Himbert, M.

G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

Holzschuch, N.

N. Holzschuch and R. Pacanowski, “A two-scale microfacet reflectance model combining reflection and diffraction,” ACM Trans. Graph. 36, 66 (2017).
[Crossref]

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

Höpe, A.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Horn, B. K.

B. K. Horn, “Shape from shading: a method for obtaining the shape of a smooth opaque object from one view,” Technical Report (Massachusetts Institute of Technology, 1970).

Hsia, J. J.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).

Hünerhoff, D.

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Iacomussi, P.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Iehl, J.-C.

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

Jaanson, P.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Jakob, O.

W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
[Crossref]

Jakob, W.

T. Zeltner and W. Jakob, “The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance,” ACM Trans. Graph. 37, 74 (2018).
[Crossref]

J. Dupuy and W. Jakob, “An adaptive parameterization for efficient material acquisition and rendering,” ACM Trans. Graph. 37, 274 (2018).
[Crossref]

W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
[Crossref]

Jankó, Z.

Z. Jankó, A. Delaunoy, and E. Prados, “Colour dynamic photometric stereo for textured surfaces,” in Asian Conference on Computer Vision (ACCV), R. Kimmel, R. Klette, and A. Sugimoto, eds. (Springer, 2011), pp. 55–66.

Jørgensen, J. F.

Kajiya, J. T.

J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM, 1986), pp. 143–150.

Källberg, S.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Kalleberg, S.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

Khoudeir, M.

Kienle, A.

Koo, A.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Krivanek, J.

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
[Crossref]

J. Krivanek and P. Gautron, Practical Global Illumination with Irradiance Caching (Morgan and Claypool, 2009).

Lafortune, E. P. F.

E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM/Addison-Wesley, 1997), pp. 117–126.

Lambert, J.

J. Lambert, Photometria, sive de Mensura et gradibus luminis, colorum et umbrae (W. Engelmann, 1760).

Languenou, E.

E. Languenou, K. Bouatouch, and P. Tellier, “An adaptive discretization method for radiosity,” Comput. Graph. Forum 11, 205–216 (1992).
[Crossref]

Languénou, E.

E. Languénou, K. Bouatouch, and M. Chelle, “Global illumination in presence of participating media with general properties,” in Photorealistic Rendering Techniques, G. Sakas, S. Müller, and P. Shirley, eds. (Springer, 1995), pp. 71–86.

Le Breton, R.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

Leloup, F.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Leroux, T.

T. Leroux, “New uniformity measurement method for LCD panels,” Proc. SPIE 3636, 191–198 (1999).
[Crossref]

O. Moreau and T. Leroux, “Fast and accurate measurement of liquid crystal tilt bias angle with the ELDIM EZContrast system,” Proc. SPIE 3826, 236–241 (1999).
[Crossref]

T. Leroux, “Fast contrast vs viewing angle measurements of LCDs,” in Eurodisplay, Strasbourg, France (1993), Vol. 447.

Li, H.

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference on Rendering Techniques (Eurographics Association, 2007), pp. 195–206.

Limperis, T.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).

Lockerman, Y. D.

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

Lucat, A.

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction effects detection for HDR image-based measurements,” Opt. Express 25, 27146–27164 (2017).
[Crossref]

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction removal in an image-based BRDF measurement setup,” in Electronic Imaging Material Appearance, Burlingame, California, USA, 2018, pp. 1–6.

Madsen, M. H.

Marschner, S.

W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
[Crossref]

Marschner, S. R.

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference on Rendering Techniques (Eurographics Association, 2007), pp. 195–206.

Mazauric, S.

Mecca, R.

R. Mecca and M. Falcone, “Uniqueness and approximation of a photometric shape-from-shading model,” SIAM J. Imag. Sci. 6, 616–659 (2013).
[Crossref]

Y. Queau, R. Mecca, and J.-D. Durou, “Unbiased photometric stereo for colored surfaces: a variational approach,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

Mélou, J.

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

Meneveaux, D.

M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
[Crossref]

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
[Crossref]

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

B. Mercier, D. Meneveaux, and A. Fournier, “A framework for automatically recovering object shape, reflectance and light sources from calibrated images,” Int. J. Comput. Vis. 73, 77–93 (2007).
[Crossref]

M. Ribardière, D. Meneveaux, B. Bringier, and L. Simonot, “Appearance of interfaced Lambertian microfacets, using STD distribution,” in Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2017).

Méneveaux, D.

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

Menu, M.

M. Elias, L. Simonot, and M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[Crossref]

Mercier, B.

B. Mercier, D. Meneveaux, and A. Fournier, “A framework for automatically recovering object shape, reflectance and light sources from calibrated images,” Int. J. Comput. Vis. 73, 77–93 (2007).
[Crossref]

Merillou, N.

N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
[Crossref]

Merillou, S.

N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
[Crossref]

Mérillou, S.

X. Chermain, F. Claux, and S. Mérillou, “A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps,” Vis. Comput. 36, 1–11 (2018).
[Crossref]

S. Mérillou and D. Ghazanfarpour, “A survey of aging and weathering phenomena in computer graphics,” Comput. Graph. 32, 159–174 (2008).
[Crossref]

C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
[Crossref]

Meunier, S.

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

Middleton, W. K.

Moreau, O.

O. Moreau and T. Leroux, “Fast and accurate measurement of liquid crystal tilt bias angle with the ELDIM EZContrast system,” Proc. SPIE 3826, 236–241 (1999).
[Crossref]

Muselet, D.

D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.

Nadal, M. E.

G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, 58800T (2005).
[Crossref]

Nayar, S. K.

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[Crossref]

Neyret, F.

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

Nicodemus, F. E.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).

Noé, N.

N. Noé and B. Péroche, “Hierarchical reconstruction of BRDFs using locally supported functions,” Comput. Graph. Forum 19, 173–184 (2000).
[Crossref]

Nowrouzezahrai, D.

C. Soler, K. Subr, and D. Nowrouzezahrai, “A versatile parameterization for measured material manifolds,” Comput. Graph. Forum 37, 135–144 (2018).
[Crossref]

C. Soler, M. Bagher, and D. Nowrouzezahrai, “Efficient and accurate spherical Kernel integrals using isotropic decomposition,” ACM Trans. Graph. 34, 161 (2015).
[Crossref]

Obein, G.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

L. Simonot and G. Obein, “Geometrical considerations in analyzing isotropic or anisotropic surface reflections,” Appl. Opt. 46, 2615–2623 (2007).
[Crossref]

G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, 58800T (2005).
[Crossref]

F. Vienot and G. Obein, “Is gloss recognized as a surface property?” in 1st International Workshop on Materials and Sensations, Pau, France (2004), Vol. 3826, pp. 27–29.

G. Obein and F. Vienot, “Modelling the BRDF of a series of matt to glossy black samples,” in Proceedings of the CIE Expert Symposium on Visual Appearance (2007), Vol. CIE x032, pp. 67–74.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.

Omidvar, M.

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

Oren, M.

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[Crossref]

Ostromoukhov, V.

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

Pacanowski, R.

P. Barla, R. Pacanowski, and P. Vangorp, “A composite BRDF model for hazy gloss,” Comput. Graph. Forum 37, 55–66 (2018).
[Crossref]

N. Holzschuch and R. Pacanowski, “A two-scale microfacet reflectance model combining reflection and diffraction,” ACM Trans. Graph. 36, 66 (2017).
[Crossref]

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction effects detection for HDR image-based measurements,” Opt. Express 25, 27146–27164 (2017).
[Crossref]

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

P. Barla, L. Belcour, and R. Pacanowski, “In praise of an alternative BRDF parametrization,” in Material Appearance Modeling (2015).

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction removal in an image-based BRDF measurement setup,” in Electronic Imaging Material Appearance, Burlingame, California, USA, 2018, pp. 1–6.

L. Belcour, P. Barla, and R. Pacanowski, “ALTA: a BRDF analysis library,” in Eurographics Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2014).

Pattanaik, S.

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
[Crossref]

P. Gautron, K. Bouatouch, and S. Pattanaik, “Temporal radiance caching,” in ACM SIGGRAPH 2006 Sketches (ACM, 2006).

Pattanaik, S. N.

S. N. Pattanaik and K. Bouatouch, “Fast wavelet radiosity method,” Comput. Graph. Forum 13, 407–420 (1994).
[Crossref]

Paulin, M.

L. Claustres, M. Paulin, and Y. Boucher, “A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering,” Vis. Comput. 22, 221–237 (2006).
[Crossref]

L. Claustres, L. Barthe, and M. Paulin, “Wavelet encoding of BRDFs for real-time rendering,” in Proceedings of Graphics Interface (GI) (ACM, 2007), pp. 169–176.

Pavie, N.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).

Perez-Cazorla, F.

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

F. Perez-Cazorla, X. Pueyo, and F. X. Sillion, “Global illumination techniques for the simulation of participating media,” in Proceedings of the Eighth Eurographics Workshop on Rendering, Saint Etienne, France, 1997.

Péroche, B.

N. Noé and B. Péroche, “Hierarchical reconstruction of BRDFs using locally supported functions,” Comput. Graph. Forum 19, 173–184 (2000).
[Crossref]

J. Zaninetti, X. Serpaggi, and B. Péroche, “A vector approach for global illumination in ray tracing,” Comput. Graph. Forum 17, 149–158 (1998).
[Crossref]

Perrot, R.

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

Petrou, M.

S. Barsky and M. Petrou, “The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003).
[Crossref]

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

Pinel, N.

E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface,” Waves Random Complex Media 23, 318–335 (2013).
[Crossref]

Pons, A.

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Poulin, P.

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

Prados, E.

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

Z. Jankó, A. Delaunoy, and E. Prados, “Colour dynamic photometric stereo for textured surfaces,” in Asian Conference on Computer Vision (ACCV), R. Kimmel, R. Klette, and A. Sugimoto, eds. (Springer, 2011), pp. 55–66.

E. Prados and O. Faugeras, “Shape from shading: a well-posed problem?” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, USA, IEEE, 2005, pp. 870–877.

Premože, S.

M. Ashikhmin, S. Premože, and P. Shirley, “A microfacet-based BRDF generator,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp. 65–74.

Puech, C.

F. X. Sillion and C. Puech, Radiosity and Global Illumination (Morgan Kaufmann, 1994).

Pueyo, X.

C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
[Crossref]

F. Perez-Cazorla, X. Pueyo, and F. X. Sillion, “Global illumination techniques for the simulation of participating media,” in Proceedings of the Eighth Eurographics Workshop on Rendering, Saint Etienne, France, 1997.

Queau, Y.

Y. Queau, R. Mecca, and J.-D. Durou, “Unbiased photometric stereo for colored surfaces: a variational approach,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

Quéau, Y.

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

Rabal, A.

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.

Raymond, B.

B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of scratched materials using a structured SV-BRDF model,” ACM Trans. Graph. 35, 57 (2016).
[Crossref]

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

Reitz, K. P.

Ribardière, M.

M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
[Crossref]

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
[Crossref]

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

M. Ribardière, D. Meneveaux, B. Bringier, and L. Simonot, “Appearance of interfaced Lambertian microfacets, using STD distribution,” in Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2017).

Richmond, J. C.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).

Rubiño, M.

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Rushmeier, H.

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

J. Dorsey, H. Rushmeier, and F. X. Sillion, Digital Modeling of Material Appearance, Computer Graphics (Morgan Kaufmann/Elsevier, 2007).

Rusinkiewicz, S. M.

S. M. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Eurographics Workshop on Rendering (Springer, 1998), pp. 11–22.

Saillard, J.

C. Bourlier, G. Berginc, and J. Saillard, “One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations,” IEEE Trans. Antennas Propag. 50, 312–324 (2002).
[Crossref]

Saint-Pierre, D.

D. Saint-Pierre, L. Simonot, and M. Hébert, “Reflectance computation for a specular only V-cavity,” in International Workshop on Computational Color Imaging (Springer, 2019), pp. 289–303.

D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.

Sauvage, B.

G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
[Crossref]

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

Scheel, A.

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

Schlick, C.

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph Forum 13, 233–246 (1994).
[Crossref]

C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
[Crossref]

Serpaggi, X.

J. Zaninetti, X. Serpaggi, and B. Péroche, “A vector approach for global illumination in ray tracing,” Comput. Graph. Forum 17, 149–158 (1998).
[Crossref]

Shirley, P.

M. Ashikhmin, S. Premože, and P. Shirley, “A microfacet-based BRDF generator,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp. 65–74.

Sillion, F. X.

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

F. X. Sillion, “A unified hierarchical algorithm for global illumination with scattering volumes and object clusters,” IEEE Trans. Vis. Comput. Graphics 1, 240–254 (1995).
[Crossref]

X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
[Crossref]

F. X. Sillion and C. Puech, Radiosity and Global Illumination (Morgan Kaufmann, 1994).

F. Perez-Cazorla, X. Pueyo, and F. X. Sillion, “Global illumination techniques for the simulation of participating media,” in Proceedings of the Eighth Eurographics Workshop on Rendering, Saint Etienne, France, 1997.

J. Dorsey, H. Rushmeier, and F. X. Sillion, Digital Modeling of Material Appearance, Computer Graphics (Morgan Kaufmann/Elsevier, 2007).

F. X. Sillion, J. Arvo, S. Westin, and D. P. Greenberg, “A global illumination solution for general reflectance distributions,” in SIGGRAPH’91 Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, Nevada, USA (ACM Press, 1991), pp. 187–196.

Silvestri, Z.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

Simonot, L.

M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
[Crossref]

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
[Crossref]

L. Simonot, R. D. Hersch, M. Hébert, and S. Mazauric, “Multilayer four-flux matrix model accounting for directional-diffuse light transfers,” Appl. Opt. 55, 27–37 (2016).
[Crossref]

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

L. Simonot, “Photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets,” Appl. Opt. 48, 5793–5801 (2009).
[Crossref]

L. Simonot and G. Obein, “Geometrical considerations in analyzing isotropic or anisotropic surface reflections,” Appl. Opt. 46, 2615–2623 (2007).
[Crossref]

M. Elias, L. Simonot, and M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[Crossref]

D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.

D. Saint-Pierre, L. Simonot, and M. Hébert, “Reflectance computation for a specular only V-cavity,” in International Workshop on Computational Color Imaging (Springer, 2019), pp. 289–303.

M. Ribardière, D. Meneveaux, B. Bringier, and L. Simonot, “Appearance of interfaced Lambertian microfacets, using STD distribution,” in Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2017).

L. Simonot and P. Boulenguez, Quand la matière diffuse la lumière (Presses des MINES, 2019).

Šmíd, M.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Smith, B.

B. Smith, “Geometrical shadowing of a random rough surface,” IEEE Trans. Antennas Propag. 15, 668–671 (1967).
[Crossref]

Soler, C.

C. Soler, K. Subr, and D. Nowrouzezahrai, “A versatile parameterization for measured material manifolds,” Comput. Graph. Forum 37, 135–144 (2018).
[Crossref]

C. Soler, M. Bagher, and D. Nowrouzezahrai, “Efficient and accurate spherical Kernel integrals using isotropic decomposition,” ACM Trans. Graph. 34, 161 (2015).
[Crossref]

L. Belcour, K. Bala, and C. Soler, “A local frequency analysis of light scattering and absorption,” ACM Trans. Graph. 33, 163 (2014).
[Crossref]

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

Sparrow, E. M.

Spizzichino, A.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces (Pergamon, 1963).

Stamminger, M.

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

Stenger, B.

C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.

Sturm, P.

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

Subr, K.

C. Soler, K. Subr, and D. Nowrouzezahrai, “A versatile parameterization for measured material manifolds,” Comput. Graph. Forum 37, 135–144 (2018).
[Crossref]

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

Tauzia, E.

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

Taybeb-Chandoul, F.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

Tellier, P.

E. Languenou, K. Bouatouch, and P. Tellier, “An adaptive discretization method for radiosity,” Comput. Graph. Forum 11, 205–216 (1992).
[Crossref]

Torrance, K. E.

X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
[Crossref]

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
[Crossref]

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surface,” J. Opt. Soc. Am. 57, 1105–1114 (1967).
[Crossref]

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference on Rendering Techniques (Eurographics Association, 2007), pp. 195–206.

E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM/Addison-Wesley, 1997), pp. 117–126.

Trowbridge, T. S.

Turbil, C.

G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.

Vangorp, P.

P. Barla, R. Pacanowski, and P. Vangorp, “A composite BRDF model for hazy gloss,” Comput. Graph. Forum 37, 55–66 (2018).
[Crossref]

Veach, E.

E. Veach, “Robust Monte Carlo methods for light transport simulation,” Ph.D. thesis (Stanford University, 1998).

Verdú, F.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Vienot, F.

G. Obein and F. Vienot, “Modelling the BRDF of a series of matt to glossy black samples,” in Proceedings of the CIE Expert Symposium on Visual Appearance (2007), Vol. CIE x032, pp. 67–74.

F. Vienot and G. Obein, “Is gloss recognized as a surface property?” in 1st International Workshop on Materials and Sensations, Pau, France (2004), Vol. 3826, pp. 27–29.

Viénot, F.

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

Vogiatzis, G.

C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.

Walter, B.

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference on Rendering Techniques (Eurographics Association, 2007), pp. 195–206.

Ward, G. J.

G. J. Ward, “The radiance lighting simulation and rendering system,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 459–472.

Westin, S.

F. X. Sillion, J. Arvo, S. Westin, and D. P. Greenberg, “A global illumination solution for general reflectance distributions,” in SIGGRAPH’91 Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, Nevada, USA (ACM Press, 1991), pp. 187–196.

Woodham, R.

R. Woodham, “Photometric method for determining surface orientation from multiples images,” Opt. Eng. 19, 139–144 (1980).
[Crossref]

Wübbeler, G.

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

Yoon, K.-J.

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

Zaninetti, J.

J. Zaninetti, X. Serpaggi, and B. Péroche, “A vector approach for global illumination in ray tracing,” Comput. Graph. Forum 17, 149–158 (1998).
[Crossref]

Zeltner, T.

T. Zeltner and W. Jakob, “The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance,” ACM Trans. Graph. 37, 74 (2018).
[Crossref]

ACM Trans. Graph. (16)

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[Crossref]

M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet BSDFs generated from NDFS and explicit microgeometry,” ACM Trans. Graph. 38, 143 (2019).
[Crossref]

E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX microflake distribution,” ACM Trans. Graph. 34, 48 (2015).
[Crossref]

E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering microfacet BSDFs with the Smith model,” ACM Trans. Graph. 35, 58 (2016).
[Crossref]

W. Jakob, E. d’Eon, O. Jakob, and S. Marschner, “A comprehensive framework for rendering layered materials,” ACM Trans. Graph. 33, 118 (2014).
[Crossref]

T. Zeltner and W. Jakob, “The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance,” ACM Trans. Graph. 37, 74 (2018).
[Crossref]

L. Belcour, “Efficient rendering of layered materials using an atomic decomposition with statistical operators,” ACM Trans. Graph. 37, 73 (2017).
[Crossref]

L. Belcour and P. Barla, “A practical extension to microfacet theory for the modeling of varying iridescence,” ACM Trans. Graph. 36, 65 (2017).
[Crossref]

N. Holzschuch and R. Pacanowski, “A two-scale microfacet reflectance model combining reflection and diffraction,” ACM Trans. Graph. 36, 66 (2017).
[Crossref]

Y. D. Lockerman, B. Sauvage, R. Allègre, J. Dischler, J. Dorsey, and H. Rushmeier, “Multi-scale label-map extraction for texture synthesis,” ACM Trans. Graph. 35, 140 (2016).
[Crossref]

B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of scratched materials using a structured SV-BRDF model,” ACM Trans. Graph. 35, 57 (2016).
[Crossref]

C. Soler, M. Bagher, and D. Nowrouzezahrai, “Efficient and accurate spherical Kernel integrals using isotropic decomposition,” ACM Trans. Graph. 34, 161 (2015).
[Crossref]

J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving parameterization for spherical distributions,” ACM Trans. Graph. 36, 139 (2017).
[Crossref]

J. Dupuy and W. Jakob, “An adaptive parameterization for efficient material acquisition and rendering,” ACM Trans. Graph. 37, 274 (2018).
[Crossref]

L. Belcour, K. Bala, and C. Soler, “A local frequency analysis of light scattering and absorption,” ACM Trans. Graph. 33, 163 (2014).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov, “Linear efficient antialiased displacement and reflectance mapping,” ACM Trans. Graph. 32, 211 (2013).
[Crossref]

Appl. Opt. (5)

Commun. ACM (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

Comput. Graph Forum (1)

C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph Forum 13, 233–246 (1994).
[Crossref]

Comput. Graph. (2)

S. Mérillou and D. Ghazanfarpour, “A survey of aging and weathering phenomena in computer graphics,” Comput. Graph. 32, 159–174 (2008).
[Crossref]

S. Meunier, R. Perrot, L. Aveneau, D. Meneveaux, and D. Ghazanfarpour, “Cosine lobes for interactive direct lighting in dynamic scenes,” Comput. Graph. 34, 767–778 (2010).
[Crossref]

Comput. Graph. Forum (17)

N. Noé and B. Péroche, “Hierarchical reconstruction of BRDFs using locally supported functions,” Comput. Graph. Forum 19, 173–184 (2000).
[Crossref]

C. Soler, K. Subr, and D. Nowrouzezahrai, “A versatile parameterization for measured material manifolds,” Comput. Graph. Forum 37, 135–144 (2018).
[Crossref]

J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Comput. Graph. Forum 34, 21–30 (2015).
[Crossref]

C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-based model for rendering realistic scratches,” Comput. Graph. Forum 23, 361–370 (2004).
[Crossref]

J. Zaninetti, X. Serpaggi, and B. Péroche, “A vector approach for global illumination in ray tracing,” Comput. Graph. Forum 17, 149–158 (1998).
[Crossref]

G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer textures: a model for synthesis and deformation of composite textures,” Comput. Graph. Forum 36, 111–122 (2017).
[Crossref]

G. Gilet and J.-M. Dischler, “An image-based approach for stochastic volumetric and procedural details,” Comput. Graph. Forum 29, 1411–1419 (2010).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multi-scale assemblage for procedural texturing,” Comput. Graph. Forum 31, 2117–2126 (2012).
[Crossref]

B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and X. Granier, “Optimizing BRDF orientations for the manipulation of anisotropic highlights,” Comput. Graph. Forum 33, 313–321 (2014).
[Crossref]

P. Barla, R. Pacanowski, and P. Vangorp, “A composite BRDF model for hazy gloss,” Comput. Graph. Forum 37, 55–66 (2018).
[Crossref]

C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
[Crossref]

P. Callet, “Pertinent data for modelling pigmented materials in realistic rendering,” Comput. Graph. Forum 15, 119–127 (1996).
[Crossref]

M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Student’s t-distribution of slopes for microfacet based BSDFs,” Comput. Graph. Forum 36, 421–429 (2017).
[Crossref]

E. Heitz and E. d’Eon, “Importance sampling microfacet-based BSDFs using the distribution of visible normals,” Comput. Graph. Forum 33, 103–112 (2014).
[Crossref]

E. Languenou, K. Bouatouch, and P. Tellier, “An adaptive discretization method for radiosity,” Comput. Graph. Forum 11, 205–216 (1992).
[Crossref]

S. N. Pattanaik and K. Bouatouch, “Fast wavelet radiosity method,” Comput. Graph. Forum 13, 407–420 (1994).
[Crossref]

M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. X. Sillion, “Efficient glossy global illumination with interactive viewing,” Comput. Graph. Forum 19, 13–25 (2000).
[Crossref]

IEEE Comput. Graph. Appl. (1)

N. Merillou, S. Merillou, E. Galin, and D. Ghazanfarpour, “Simulating how salt decay ages buildings,” IEEE Comput. Graph. Appl. 32, 44–54 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (2)

C. Bourlier, G. Berginc, and J. Saillard, “One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations,” IEEE Trans. Antennas Propag. 50, 312–324 (2002).
[Crossref]

B. Smith, “Geometrical shadowing of a random rough surface,” IEEE Trans. Antennas Propag. 15, 668–671 (1967).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Barsky and M. Petrou, “The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003).
[Crossref]

IEEE Trans. Vis. Comput. Graphics (5)

D. Meneveaux, B. Bringier, E. Tauzia, M. Ribardière, and L. Simonot, “Rendering rough opaque materials with interfaced Lambertian microfacets,” IEEE Trans. Vis. Comput. Graphics 24, 1368–1380 (2018).
[Crossref]

R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and A. Cuyt, “Rational BRDF,” IEEE Trans. Vis. Comput. Graphics 18, 1824–1835 (2012).
[Crossref]

M. M. Bagher, C. Soler, K. Subr, L. Belcour, and N. Holzschuch, “Interactive rendering of acquired materials on dynamic geometry using frequency analysis,” IEEE Trans. Vis. Comput. Graphics 19, 749–761 (2013).
[Crossref]

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,” IEEE Trans. Vis. Comput. Graphics 11, 550–561 (2005).
[Crossref]

F. X. Sillion, “A unified hierarchical algorithm for global illumination with scattering volumes and object clusters,” IEEE Trans. Vis. Comput. Graphics 1, 240–254 (1995).
[Crossref]

Image Vision Comput. (1)

F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos, “3D-spline reconstruction using shape from shading: spline from shading,” Image Vision Comput. 26, 466–479 (2008).
[Crossref]

Int. J. Comput. Vis. (3)

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

B. Mercier, D. Meneveaux, and A. Fournier, “A framework for automatically recovering object shape, reflectance and light sources from calibrated images,” Int. J. Comput. Vis. 73, 77–93 (2007).
[Crossref]

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[Crossref]

J. Comput. Graph. Tech. (1)

E. Heitz, “Understanding the masking-shadowing function in microfacet-based BRDFs,” J. Comput. Graph. Tech. 3, 48–107 (2014).

J. Math. Imaging Vis. (1)

J. Mélou, Y. Quéau, J.-D. Durou, F. Castan, and D. Cremers, “Variational reflectance estimation from multi-view images,” J. Math. Imaging Vis. 60, 1527–1546 (2018).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Metrologia (2)

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

A. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012).
[Crossref]

Opt. Commun. (1)

M. Elias, L. Simonot, and M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[Crossref]

Opt. Eng. (1)

R. Woodham, “Photometric method for determining surface orientation from multiples images,” Opt. Eng. 19, 139–144 (1980).
[Crossref]

Opt. Express (2)

Proc. SPIE (4)

G. Obein, R. Bousquet, and M. E. Nadal, “New NIST reference goniospectrometer,” Proc. SPIE 5880, 58800T (2005).
[Crossref]

A. Höpe, A. Koo, F. Verdú, F. Leloup, G. Obein, G. Wübbeler, J. Campos, P. Iacomussi, P. Jaanson, S. Källberg, and M. Šmíd, “‘Multidimensional reflectometry for industry’ (xD-Reflect) an European research project,” Proc. SPIE 9018, 901804 (2014).
[Crossref]

T. Leroux, “New uniformity measurement method for LCD panels,” Proc. SPIE 3636, 191–198 (1999).
[Crossref]

O. Moreau and T. Leroux, “Fast and accurate measurement of liquid crystal tilt bias angle with the ELDIM EZContrast system,” Proc. SPIE 3826, 236–241 (1999).
[Crossref]

Remote Sens. Environ. (1)

A. Comar, F. Baret, G. Obein, L. Simonot, D. Meneveaux, F. Viénot, and B. de Solana, “ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface,” Remote Sens. Environ. 143, 112–121 (2014).
[Crossref]

SIAM J. Imag. Sci. (1)

R. Mecca and M. Falcone, “Uniqueness and approximation of a photometric shape-from-shading model,” SIAM J. Imag. Sci. 6, 616–659 (2013).
[Crossref]

SIGGRAPH Comput. Graph. (3)

X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25, 175–186 (1991).
[Crossref]

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the interaction of light between diffuse surfaces,” SIGGRAPH Comput. Graph. 18, 213–222 (1984).
[Crossref]

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” SIGGRAPH Comput. Graph. 11, 192–198 (1977).
[Crossref]

Vis. Comput. (4)

M. Omidvar, M. Ribardière, S. Carré, D. Méneveaux, and K. Bouatouch, “A radiance cache method for highly glossy surfaces,” Vis. Comput. 32, 1239–1250 (2016).
[Crossref]

G. Gilet, J.-M. Dischler, and D. Ghazanfarpour, “Multiple kernels noise for improved procedural texturing,” Vis. Comput. 28, 679–689 (2012).
[Crossref]

L. Claustres, M. Paulin, and Y. Boucher, “A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering,” Vis. Comput. 22, 221–237 (2006).
[Crossref]

X. Chermain, F. Claux, and S. Mérillou, “A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps,” Vis. Comput. 36, 1–11 (2018).
[Crossref]

Waves Random Complex Media (1)

E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmitter and receiver azimuthal directions on the illumination function from a random rough surface,” Waves Random Complex Media 23, 318–335 (2013).
[Crossref]

Other (44)

J. Dupuy, E. Heitz, and E. d’Eon, “Additional progress towards the unification of microfacet and microflake theories,” in Eurographics Symposium on Rendering (2016), pp. 55–63.

M. Ashikhmin, S. Premože, and P. Shirley, “A microfacet-based BRDF generator,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley, 2000), pp. 65–74.

D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, and M. Hébert, “Light interreflections and shadowing effects in a Lambertian V-cavity under diffuse illumination,” in International Symposium on Electronic Imaging (2018), pp. 1-10.

D. Saint-Pierre, L. Simonot, and M. Hébert, “Reflectance computation for a specular only V-cavity,” in International Workshop on Computational Color Imaging (Springer, 2019), pp. 289–303.

F. X. Sillion, J. Arvo, S. Westin, and D. P. Greenberg, “A global illumination solution for general reflectance distributions,” in SIGGRAPH’91 Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, Las Vegas, Nevada, USA (ACM Press, 1991), pp. 187–196.

S. M. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Eurographics Workshop on Rendering (Springer, 1998), pp. 11–22.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces (Pergamon, 1963).

M. Ribardière, D. Meneveaux, B. Bringier, and L. Simonot, “Appearance of interfaced Lambertian microfacets, using STD distribution,” in Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2017).

L. Belcour, P. Barla, and R. Pacanowski, “ALTA: a BRDF analysis library,” in Eurographics Workshop on Material Appearance Modeling, R. Klein and H. Rushmeier, eds. (The Eurographics Association, 2014).

P. Callet, Couleur-Lumière, Couleur-Matière : Interaction Lumière-Matière et Synthèse d’Images (Diderot multimédia, 1998).

A. J. Fresnel, Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée (Académie des sciences, 1823).

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, Monograph 160 (National Bureau of Standards, 1977).

J. Lambert, Photometria, sive de Mensura et gradibus luminis, colorum et umbrae (W. Engelmann, 1760).

P. Bouguer, Traité d’optique sur la gradation de la lumière (M. l’abbé de La Caille, 1760).

P. Bouguer, 1729 essai d’optique sur la gradation de la lumière (Jombert, 1921), reprinted in Les maîtres de la pensée scientifique.

T. Leroux, “Fast contrast vs viewing angle measurements of LCDs,” in Eurodisplay, Strasbourg, France (1993), Vol. 447.

J. Dorsey, H. Rushmeier, and F. X. Sillion, Digital Modeling of Material Appearance, Computer Graphics (Morgan Kaufmann/Elsevier, 2007).

L. Simonot and P. Boulenguez, Quand la matière diffuse la lumière (Presses des MINES, 2019).

Commission Internationale de l’Eclairage, “International Lighting Vocabulary, (Central Bureau of the CIE, 2011).

F. Vienot and G. Obein, “Is gloss recognized as a surface property?” in 1st International Workshop on Materials and Sensations, Pau, France (2004), Vol. 3826, pp. 27–29.

G. Obein and F. Vienot, “Modelling the BRDF of a series of matt to glossy black samples,” in Proceedings of the CIE Expert Symposium on Visual Appearance (2007), Vol. CIE x032, pp. 67–74.

G. Ged, O. Flys, Z. Silvestri, S. Kalleberg, F. Taybeb-Chandoul, R. Le Breton, M. Himbert, and G. Obein, “Characterizations of specular peaks from a metrological gloss scale,” in Proceedings of 28th CIE Session (2015), Vol. CIE 216.

G. Ged, G. Obein, M. Himbert, C. Turbil, and A. Rabal, “Does the visual system extracts more information than gloss in the specular direction?” in Proceedings of CIE Midterm Conference (2017), Vol. CIE x44, pp. 396–403.

“xDReflect,” https://www.xdreflect.eu/ .

“BiRD,” https://www.birdproject.eu/ .

F. X. Sillion and C. Puech, Radiosity and Global Illumination (Morgan Kaufmann, 1994).

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics Conference on Rendering Techniques (Eurographics Association, 2007), pp. 195–206.

E. Languénou, K. Bouatouch, and M. Chelle, “Global illumination in presence of participating media with general properties,” in Photorealistic Rendering Techniques, G. Sakas, S. Müller, and P. Shirley, eds. (Springer, 1995), pp. 71–86.

F. Perez-Cazorla, X. Pueyo, and F. X. Sillion, “Global illumination techniques for the simulation of participating media,” in Proceedings of the Eighth Eurographics Workshop on Rendering, Saint Etienne, France, 1997.

P. Barla, L. Belcour, and R. Pacanowski, “In praise of an alternative BRDF parametrization,” in Material Appearance Modeling (2015).

E. Veach, “Robust Monte Carlo methods for light transport simulation,” Ph.D. thesis (Stanford University, 1998).

G. J. Ward, “The radiance lighting simulation and rendering system,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 459–472.

P. Gautron, K. Bouatouch, and S. Pattanaik, “Temporal radiance caching,” in ACM SIGGRAPH 2006 Sketches (ACM, 2006).

J. Krivanek and P. Gautron, Practical Global Illumination with Irradiance Caching (Morgan and Claypool, 2009).

L. Claustres, L. Barthe, and M. Paulin, “Wavelet encoding of BRDFs for real-time rendering,” in Proceedings of Graphics Interface (GI) (ACM, 2007), pp. 169–176.

A. Lucat, R. Hegedus, and R. Pacanowski, “Diffraction removal in an image-based BRDF measurement setup,” in Electronic Imaging Material Appearance, Burlingame, California, USA, 2018, pp. 1–6.

J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM, 1986), pp. 143–150.

E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (ACM/Addison-Wesley, 1997), pp. 117–126.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, and D. Ghazanfarpour, “Volumetric spot noise for procedural 3D shell texture synthesis,” in Computer Graphics and Visual Computing (CGVC), C. Turkay and T. R. Wan, eds. (The Eurographics Association, 2016).

Y. Queau, R. Mecca, and J.-D. Durou, “Unbiased photometric stereo for colored surfaces: a variational approach,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

C. Hernandez, G. Vogiatzis, G. J. Brostow, B. Stenger, and R. Cipolla, “Non-rigid photometric stereo with colored lights,” in IEEE 11th International Conference on Computer Vision (2007), pp. 1–8.

Z. Jankó, A. Delaunoy, and E. Prados, “Colour dynamic photometric stereo for textured surfaces,” in Asian Conference on Computer Vision (ACCV), R. Kimmel, R. Klette, and A. Sugimoto, eds. (Springer, 2011), pp. 55–66.

B. K. Horn, “Shape from shading: a method for obtaining the shape of a smooth opaque object from one view,” Technical Report (Massachusetts Institute of Technology, 1970).

E. Prados and O. Faugeras, “Shape from shading: a well-posed problem?” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, USA, IEEE, 2005, pp. 870–877.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Angular notations used for the description of the BRDF.
Fig. 2.
Fig. 2. Principle scheme of EZ-Contrast (from [22]).
Fig. 3.
Fig. 3. Example of a BRDF measurement provided by EZ-Contrast, for a white semiglossy sample. Illumination along $ {\bf i}(45,180) $ . Luminance is recorded for $ 0^\circ \le {\theta _{\bf o}} \le 80^\circ $ and $ 0^\circ \le {\varphi _{\bf o}} \le 360^\circ $ with a resolution of 0.4°.
Fig. 4.
Fig. 4. Picture of the ConDOR BRDF acquisition system.
Fig. 5.
Fig. 5. Four computer-generated images with various materials: (a) flat gold surface generated using spectral refraction indices; (b) rough gold surface corresponding to Cook and Torrance model [12]; (c) rough glass corresponding to the contribution of Walter et al. [39]; (d) wax wood approximation resulting from a texture associated with a rough dielectric interface.
Fig. 6.
Fig. 6. Photometric stereo pipeline used for 3D geometry measurement; historically, a normal map (b) is computed from a series of images with fixed viewpoint and several fixed light sources (a) and a BRDF model, then a height map (c) is reconstructed. More recently, the height map (c) is estimated directly from the series of images (a) and a BRDF model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f ( θ i , θ o , φ i , φ o , x o , y o , λ ) = d L o ( θ i , θ o , φ i , φ o , x o , y o , λ ) d E i ( θ i , φ i , λ ) .
f ( θ i , θ o , φ i , φ o , A , λ ) = ϕ o ( θ i , θ o , φ i , φ o , A , λ ) ϕ i ( θ i , φ i , A , λ ) cos θ o Ω o ,
f ( i , o , n ) = F ( i , m ) D ( m ) G ( i , o , m ) 4 | i . n | | o . n | ,

Metrics