C. E. Carrizo, R. M. Calvo, and A. Belmonte, “Intensity-based adaptive optics with sequential optimization for laser communications,” Opt. Express 26, 16044–16053 (2018).

[Crossref]

X. He, X. Zhao, S. Cui, and H. Gu, “A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication,” Opt. Commun. 429, 127–137 (2018).

[Crossref]

R. Doelman, N. H. Thao, and M. Verhaegen, “Solving large-scale general phase retrieval problems via a sequence of convex relaxations,” J. Opt. Soc. Am. A 35, 1410–1419 (2018).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23, 24587–24601 (2015).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensorless adaptive optics based on the trust region method,” Opt. Lett. 40, 1235–1237 (2015).

[Crossref]

R. Conan and C. Correia, “Object-oriented MATLAB adaptive optics toolbox,” Proc. SPIE 9148, 91486C (2014).

[Crossref]

K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal control approach for adaptive optics,” IEEE Trans. Control Syst. Technol. 16, 381–395 (2008).

[Crossref]

S. Zommer, E. Ribak, S. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31, 939–941 (2006).

[Crossref]

C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. De Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464–7476 (2006).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

R. Conan and C. Correia, “Object-oriented MATLAB adaptive optics toolbox,” Proc. SPIE 9148, 91486C (2014).

[Crossref]

R. Conan and C. Correia, “Object-oriented MATLAB adaptive optics toolbox,” Proc. SPIE 9148, 91486C (2014).

[Crossref]

X. He, X. Zhao, S. Cui, and H. Gu, “A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication,” Opt. Commun. 429, 127–137 (2018).

[Crossref]

K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal control approach for adaptive optics,” IEEE Trans. Control Syst. Technol. 16, 381–395 (2008).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

X. He, X. Zhao, S. Cui, and H. Gu, “A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication,” Opt. Commun. 429, 127–137 (2018).

[Crossref]

X. He, X. Zhao, S. Cui, and H. Gu, “A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication,” Opt. Commun. 429, 127–137 (2018).

[Crossref]

K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal control approach for adaptive optics,” IEEE Trans. Control Syst. Technol. 16, 381–395 (2008).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007).

R. Doelman, N. H. Thao, and M. Verhaegen, “Solving large-scale general phase retrieval problems via a sequence of convex relaxations,” J. Opt. Soc. Am. A 35, 1410–1419 (2018).

[Crossref]

H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23, 24587–24601 (2015).

[Crossref]

K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal control approach for adaptive optics,” IEEE Trans. Control Syst. Technol. 16, 381–395 (2008).

[Crossref]

M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007).

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

X. He, X. Zhao, S. Cui, and H. Gu, “A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication,” Opt. Commun. 429, 127–137 (2018).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).

[Crossref]

K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal control approach for adaptive optics,” IEEE Trans. Control Syst. Technol. 16, 381–395 (2008).

[Crossref]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440–1453 (2000).

[Crossref]

R. Doelman, N. H. Thao, and M. Verhaegen, “Solving large-scale general phase retrieval problems via a sequence of convex relaxations,” J. Opt. Soc. Am. A 35, 1410–1419 (2018).

[Crossref]

X. He, X. Zhao, S. Cui, and H. Gu, “A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication,” Opt. Commun. 429, 127–137 (2018).

[Crossref]

H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23, 24587–24601 (2015).

[Crossref]

W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25, 20584–20597 (2017).

[Crossref]

C. E. Carrizo, R. M. Calvo, and A. Belmonte, “Intensity-based adaptive optics with sequential optimization for laser communications,” Opt. Express 26, 16044–16053 (2018).

[Crossref]

C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. De Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464–7476 (2006).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

H. Linhai and C. Rao, “Wavefront sensorless adaptive optics: a general model-based approach,” Opt. Express 19, 371–379 (2011).

[Crossref]

W. Lianghua, P. Yang, W. Shuai, L. Wenjing, C. Shanqiu, and B. Xu, “A high speed model-based approach for wavefront sensorless adaptive optics systems,” Opt. Laser Technol. 99, 124–132 (2018).

[Crossref]

S. Zommer, E. Ribak, S. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31, 939–941 (2006).

[Crossref]

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensorless adaptive optics based on the trust region method,” Opt. Lett. 40, 1235–1237 (2015).

[Crossref]

R. Conan and C. Correia, “Object-oriented MATLAB adaptive optics toolbox,” Proc. SPIE 9148, 91486C (2014).

[Crossref]

O. Soloviev, “Optimal basis for modal sensorless adaptive optics,” arXiv:1707.08489 (2017).

M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007).