Abstract

Tone-mapping operators (TMOs) are designed to generate perceptually similar low-dynamic-range images from high-dynamic-range ones. We studied the performance of 15 TMOs in two psychophysical experiments where observers compared the digitally generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment, and the setups were designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the question of which TMO is the best, KimKautz [“Consistent tone reproduction,” in Proceedings of Computer Graphics and Imaging (2008)] and Krawczyk [“Lightness perception in tone reproduction for high dynamic range images,” in Proceedings of Eurographics (2005), p. 3] obtained the better results across the different experiments. We conclude that more thorough and standardized evaluation criteria are needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Naturalness index for a tone-mapped high dynamic range image

Yang Song, Gangyi Jiang, Mei Yu, Yun Zhang, Feng Shao, and Zongju Peng
Appl. Opt. 55(35) 10084-10091 (2016)

High dynamic range head mounted display based on dual-layer spatial modulation

Miaomiao Xu and Hong Hua
Opt. Express 25(19) 23320-23333 (2017)

No-reference high-dynamic-range image quality assessment based on tensor decomposition and manifold learning

Feifan Guan, Gangyi Jiang, Yang Song, Mei Yu, Zongju Peng, and Fen Chen
Appl. Opt. 57(4) 839-848 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Ferwerda and S. Luka, “A high resolution, high dynamic range display system for vision research,” J. Vis. 9(8), 346 (2009).
    [Crossref]
  2. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 1st ed. (Morgan Kaufmann, 2005), Chap. 6, pp. 187–221.
  3. R. Snowden, P. Thompson, and T. Troscianko, Basic Vision an Introduction to Visual Perception (Oxford University, 2006).
  4. J. McCann, “Art, science, and appearance in HDR,” J. Soc. Inf. Disp. 15, 709–719 (2007).
    [Crossref]
  5. C. Parraman, “The drama of illumination: artist’s approaches to the creation of hdr in paintings and prints,” Proc. SPIE 7527, 75270U (2010).
    [Crossref]
  6. J. McCann and A. Rizzi, The Art and Science of HDR Imaging, 1st ed. (Wiley, 2012), Chap. 13, pp. 119–121.
  7. C. Mees, The Fundamentals of Photography, 2nd ed. (Eastman Kodak, 1921).
  8. H. Barlow, “Summation and inhibition in the frogs retina,” J. Physiol. 119, 69–88 (1953).
    [Crossref]
  9. A. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
    [Crossref]
  10. C. Blakemore and F. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
    [Crossref]
  11. E. Land, “The retinex,” Am. Sci. 52, 247–253, 255–264 (1964).
  12. E. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [Crossref]
  13. J. McCann, “Capturing a black cat in shade: past and present of retinex color appearance models,” J. Electron. Imaging 13, 36–47 (2004).
    [Crossref]
  14. J. McCann, “Retinex at 50: color theory and spatial algorithms, a review,” J. Electron. Imaging 26, 031204 (2017).
    [Crossref]
  15. J. McCann, “Lessons learned from mondrians applied to real images and color gamuts,” in 7th Color Imaging Conference: Color Science, Systems and Applications (1999), pp. 1–8.
  16. X. Otazu, M. Vanrell, and C. Parraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
    [Crossref]
  17. X. Otazu, C. A. Parraga, and M. Vanrell, “Toward a unified chromatic induction model,” J. Vis. 10(12), 5 (2010).
    [Crossref]
  18. J. McCann, C. Parraman, and A. Rizzi, “Reflectance, illumination, and appearance in color constancy,” Front. Psychol. 5, 5 (2014).
    [Crossref]
  19. A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
    [Crossref]
  20. T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
    [Crossref]
  21. H. Yeganeh and Z. Wang, “Objective quality assessment of tone-mapped images,” IEEE Trans. Image Process. 22, 657–667 (2013).
    [Crossref]
  22. F. Drago, W. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” in ACM SIGGRAPH Conference Abstracts and Applications (2003).
  23. J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild, “Testing hdr image rendering algortihms,” in IS&T/SID 12th Color Imaging Conference (2004).
  24. A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” in Human Vision & Electronic Imaging X (SPIE, 2005).
  25. P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
    [Crossref]
  26. M. Ashikhmin and J. Goyal, “A reality check for tone-mapping operators,” ACM Trans. Appl. Percept. 3, 399–411 (2006).
    [Crossref]
  27. M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Image attributes and quality for evaluation of tone mapping operators,” in 14th Pacific Conference on Computer Graphics and Applications (2006), pp. 35–44.
  28. A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
    [Crossref]
  29. J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
    [Crossref]
  30. J. Kuang, G. Johnson, and M. Fairchild, “icam06: a refined image appearance model for hdr image rendering,” J. Vis. Commun. Image Represent. 18, 406–414 (2007).
    [Crossref]
  31. A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
    [Crossref]
  32. M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
    [Crossref]
  33. J. Tumblin and H. Rushmeier, “Tone reproduction for realistic images,” IEEE Comput. Graph. Appl. 13, 42–48 (1993).
    [Crossref]
  34. G. Ward, A Contrast-Based Scalefactor for Luminance Display (Academic, 1994), pp. 415–421.
  35. E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
    [Crossref]
  36. N. Miller, P. Y. Ngai, and D. D. Miller, “The application of computer graphics in lighting design,” J. Illum. Eng. Soc. 14, 6–26 (1984).
    [Crossref]
  37. M. Kim and J. Kautz, “Consistent tone reproduction,” in Proceedings of Computer Graphics and Imaging (2008).
  38. G. Krawczyk, K. Myszkowski, and H. Seidel, “Lightness perception in tone reproduction for high dynamic range images,” in Proceedings of Eurographics (2005), p. 3.
  39. J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (ACM, 1996), pp. 249–258.
  40. M. Ashikhmin, “A tone mapping algorithm for high contrast images,” in 13th Eurographics Workshop on Rendering (2002).
  41. F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high dynamic-range images,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 257–266.
  42. R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range compression,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 249–256.
  43. F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” in Proceedings of Eurographics (2003), Vol. 22.
  44. Y. Li, L. Sharan, and E. Adelson, “Compressing and companding high dynamic range images with subband architectures,” ACM Trans. Graph. 24, 836–844 (2005).
    [Crossref]
  45. E. Reinhard and K. Devlin, “Dynamic range reduction inspired by photoreceptor physiology,” IEEE Trans. Vis. Comput. Graph. 11, 13–24 (2005).
    [Crossref]
  46. T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in 15th Pacific Conference on Computer Graphics and Applications (2007), pp. 382–390.
  47. L. Meylan, D. Alleysson, and S. Süsstrunk, “Model of retinal local adaptation for the tone mapping color filter array images,” J. Opt. Soc. Am. A 24, 2807–2816 (2007).
    [Crossref]
  48. S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
    [Crossref]
  49. X. Otazu, “Perceptual tone-mapping operator based on multiresolution contrast decomposition,” Perception 41 ECVP Abstract Supplement (2012), p. 86.
  50. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
    [Crossref]
  51. “Camera calibration methods,” 2018, http://www.cvc.uab.es/color_calibration/CameraCal2.htm .
  52. F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (AK Peters, CRC Press, 2011).
  53. M. Kendall and B. Babington-Smith, “On the method of paired comparisons,” Biometrika 31, 324–345 (1940).
    [Crossref]
  54. E. Montage, “Louis leon thurstone in monte carlo: creating error bars for the method of paired comparison,” Proc. SPIE 5294, 222–230 (2004).
    [Crossref]
  55. M. Fairchild and G. Johnson, “Rendering hdr images,” in 11th Color Imaging Conference (IS&T/SID, 2000), pp. 108–111.
  56. P. Choudhury and J. Tumblin, “The trilateral filter for high contrast images and meshes,” in Proceedings of the Eurographics Symposium on Rendering (2003), pp. 186–196.

2017 (1)

J. McCann, “Retinex at 50: color theory and spatial algorithms, a review,” J. Electron. Imaging 26, 031204 (2017).
[Crossref]

2014 (1)

J. McCann, C. Parraman, and A. Rizzi, “Reflectance, illumination, and appearance in color constancy,” Front. Psychol. 5, 5 (2014).
[Crossref]

2013 (1)

H. Yeganeh and Z. Wang, “Objective quality assessment of tone-mapped images,” IEEE Trans. Image Process. 22, 657–667 (2013).
[Crossref]

2011 (1)

S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
[Crossref]

2010 (2)

X. Otazu, C. A. Parraga, and M. Vanrell, “Toward a unified chromatic induction model,” J. Vis. 10(12), 5 (2010).
[Crossref]

C. Parraman, “The drama of illumination: artist’s approaches to the creation of hdr in paintings and prints,” Proc. SPIE 7527, 75270U (2010).
[Crossref]

2009 (1)

J. Ferwerda and S. Luka, “A high resolution, high dynamic range display system for vision research,” J. Vis. 9(8), 346 (2009).
[Crossref]

2008 (3)

T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
[Crossref]

X. Otazu, M. Vanrell, and C. Parraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[Crossref]

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
[Crossref]

2007 (7)

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
[Crossref]

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

J. Kuang, G. Johnson, and M. Fairchild, “icam06: a refined image appearance model for hdr image rendering,” J. Vis. Commun. Image Represent. 18, 406–414 (2007).
[Crossref]

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

L. Meylan, D. Alleysson, and S. Süsstrunk, “Model of retinal local adaptation for the tone mapping color filter array images,” J. Opt. Soc. Am. A 24, 2807–2816 (2007).
[Crossref]

A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
[Crossref]

J. McCann, “Art, science, and appearance in HDR,” J. Soc. Inf. Disp. 15, 709–719 (2007).
[Crossref]

2006 (1)

M. Ashikhmin and J. Goyal, “A reality check for tone-mapping operators,” ACM Trans. Appl. Percept. 3, 399–411 (2006).
[Crossref]

2005 (3)

Y. Li, L. Sharan, and E. Adelson, “Compressing and companding high dynamic range images with subband architectures,” ACM Trans. Graph. 24, 836–844 (2005).
[Crossref]

E. Reinhard and K. Devlin, “Dynamic range reduction inspired by photoreceptor physiology,” IEEE Trans. Vis. Comput. Graph. 11, 13–24 (2005).
[Crossref]

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
[Crossref]

2004 (2)

J. McCann, “Capturing a black cat in shade: past and present of retinex color appearance models,” J. Electron. Imaging 13, 36–47 (2004).
[Crossref]

E. Montage, “Louis leon thurstone in monte carlo: creating error bars for the method of paired comparison,” Proc. SPIE 5294, 222–230 (2004).
[Crossref]

2002 (1)

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
[Crossref]

1999 (1)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

1993 (1)

J. Tumblin and H. Rushmeier, “Tone reproduction for realistic images,” IEEE Comput. Graph. Appl. 13, 42–48 (1993).
[Crossref]

1984 (2)

N. Miller, P. Y. Ngai, and D. D. Miller, “The application of computer graphics in lighting design,” J. Illum. Eng. Soc. 14, 6–26 (1984).
[Crossref]

A. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

1971 (1)

1969 (1)

C. Blakemore and F. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

1964 (1)

E. Land, “The retinex,” Am. Sci. 52, 247–253, 255–264 (1964).

1953 (1)

H. Barlow, “Summation and inhibition in the frogs retina,” J. Physiol. 119, 69–88 (1953).
[Crossref]

1940 (1)

M. Kendall and B. Babington-Smith, “On the method of paired comparisons,” Biometrika 31, 324–345 (1940).
[Crossref]

Adelson, E.

Y. Li, L. Sharan, and E. Adelson, “Compressing and companding high dynamic range images with subband architectures,” ACM Trans. Graph. 24, 836–844 (2005).
[Crossref]

Agostini, T.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Akyüz, A.

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

Alleysson, D.

Annan, V.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Annen, T.

F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” in Proceedings of Eurographics (2003), Vol. 22.

Artusi, A.

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
[Crossref]

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Image attributes and quality for evaluation of tone mapping operators,” in 14th Pacific Conference on Computer Graphics and Applications (2006), pp. 35–44.

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (AK Peters, CRC Press, 2011).

Ashikhmin, M.

M. Ashikhmin and J. Goyal, “A reality check for tone-mapping operators,” ACM Trans. Appl. Percept. 3, 399–411 (2006).
[Crossref]

M. Ashikhmin, “A tone mapping algorithm for high contrast images,” in 13th Eurographics Workshop on Rendering (2002).

Aydin, T.

T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
[Crossref]

Babington-Smith, B.

M. Kendall and B. Babington-Smith, “On the method of paired comparisons,” Biometrika 31, 324–345 (1940).
[Crossref]

Banterle, F.

A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
[Crossref]

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (AK Peters, CRC Press, 2011).

Barlow, H.

H. Barlow, “Summation and inhibition in the frogs retina,” J. Physiol. 119, 69–88 (1953).
[Crossref]

Bertalmío, M.

S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
[Crossref]

Blakemore, C.

C. Blakemore and F. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

Blanz, V.

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
[Crossref]

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” in Human Vision & Electronic Imaging X (SPIE, 2005).

Bloj, M.

A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
[Crossref]

Bonato, F.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Bülthoff, H.

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

Cadík, M.

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
[Crossref]

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Image attributes and quality for evaluation of tone mapping operators,” in 14th Pacific Conference on Computer Graphics and Applications (2006), pp. 35–44.

Campbell, F.

C. Blakemore and F. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

Caselles, V.

S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
[Crossref]

Cataliotti, J.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Chalmers, A.

A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
[Crossref]

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
[Crossref]

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (AK Peters, CRC Press, 2011).

Chiba, N.

F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” in Proceedings of Eurographics (2003), Vol. 22.

Choudhury, P.

P. Choudhury and J. Tumblin, “The trilateral filter for high contrast images and meshes,” in Proceedings of the Eurographics Symposium on Rendering (2003), pp. 186–196.

Debattista, K.

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (AK Peters, CRC Press, 2011).

Debevec, P.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 1st ed. (Morgan Kaufmann, 2005), Chap. 6, pp. 187–221.

Derrington, A.

A. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Devlin, K.

E. Reinhard and K. Devlin, “Dynamic range reduction inspired by photoreceptor physiology,” IEEE Trans. Vis. Comput. Graph. 11, 13–24 (2005).
[Crossref]

Dorsey, J.

F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high dynamic-range images,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 257–266.

Drago, F.

F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” in Proceedings of Eurographics (2003), Vol. 22.

F. Drago, W. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” in ACM SIGGRAPH Conference Abstracts and Applications (2003).

Durand, F.

F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high dynamic-range images,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 257–266.

Economou, E.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Fairchild, M.

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

J. Kuang, G. Johnson, and M. Fairchild, “icam06: a refined image appearance model for hdr image rendering,” J. Vis. Commun. Image Represent. 18, 406–414 (2007).
[Crossref]

J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild, “Testing hdr image rendering algortihms,” in IS&T/SID 12th Color Imaging Conference (2004).

M. Fairchild and G. Johnson, “Rendering hdr images,” in 11th Color Imaging Conference (IS&T/SID, 2000), pp. 108–111.

Fattal, R.

R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range compression,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 249–256.

Ferradans, S.

S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
[Crossref]

Ferwerda, J.

J. Ferwerda and S. Luka, “A high resolution, high dynamic range display system for vision research,” J. Vis. 9(8), 346 (2009).
[Crossref]

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
[Crossref]

J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (ACM, 1996), pp. 249–258.

Fleming, R.

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

Gilchrist, A.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Goyal, J.

M. Ashikhmin and J. Goyal, “A reality check for tone-mapping operators,” ACM Trans. Appl. Percept. 3, 399–411 (2006).
[Crossref]

Greenberg, D.

J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (ACM, 1996), pp. 249–258.

Johnson, G.

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

J. Kuang, G. Johnson, and M. Fairchild, “icam06: a refined image appearance model for hdr image rendering,” J. Vis. Commun. Image Represent. 18, 406–414 (2007).
[Crossref]

J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild, “Testing hdr image rendering algortihms,” in IS&T/SID 12th Color Imaging Conference (2004).

M. Fairchild and G. Johnson, “Rendering hdr images,” in 11th Color Imaging Conference (IS&T/SID, 2000), pp. 108–111.

Kautz, J.

M. Kim and J. Kautz, “Consistent tone reproduction,” in Proceedings of Computer Graphics and Imaging (2008).

T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in 15th Pacific Conference on Computer Graphics and Applications (2007), pp. 382–390.

Kendall, M.

M. Kendall and B. Babington-Smith, “On the method of paired comparisons,” Biometrika 31, 324–345 (1940).
[Crossref]

Kim, M.

M. Kim and J. Kautz, “Consistent tone reproduction,” in Proceedings of Computer Graphics and Imaging (2008).

Kossyfidis, C.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Krauskopf, J.

A. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Krawczyk, G.

G. Krawczyk, K. Myszkowski, and H. Seidel, “Lightness perception in tone reproduction for high dynamic range images,” in Proceedings of Eurographics (2005), p. 3.

Kuang, J.

J. Kuang, G. Johnson, and M. Fairchild, “icam06: a refined image appearance model for hdr image rendering,” J. Vis. Commun. Image Represent. 18, 406–414 (2007).
[Crossref]

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild, “Testing hdr image rendering algortihms,” in IS&T/SID 12th Color Imaging Conference (2004).

Land, E.

E. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[Crossref]

E. Land, “The retinex,” Am. Sci. 52, 247–253, 255–264 (1964).

Ledda, P.

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
[Crossref]

Lennie, P.

A. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Li, X.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Li, Y.

Y. Li, L. Sharan, and E. Adelson, “Compressing and companding high dynamic range images with subband architectures,” ACM Trans. Graph. 24, 836–844 (2005).
[Crossref]

Lischinski, D.

R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range compression,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 249–256.

Liu, C.

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

Luka, S.

J. Ferwerda and S. Luka, “A high resolution, high dynamic range display system for vision research,” J. Vis. 9(8), 346 (2009).
[Crossref]

Mantiuk, R.

T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
[Crossref]

Martens, W.

F. Drago, W. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” in ACM SIGGRAPH Conference Abstracts and Applications (2003).

McCann, J.

J. McCann, “Retinex at 50: color theory and spatial algorithms, a review,” J. Electron. Imaging 26, 031204 (2017).
[Crossref]

J. McCann, C. Parraman, and A. Rizzi, “Reflectance, illumination, and appearance in color constancy,” Front. Psychol. 5, 5 (2014).
[Crossref]

J. McCann, “Art, science, and appearance in HDR,” J. Soc. Inf. Disp. 15, 709–719 (2007).
[Crossref]

J. McCann, “Capturing a black cat in shade: past and present of retinex color appearance models,” J. Electron. Imaging 13, 36–47 (2004).
[Crossref]

E. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[Crossref]

J. McCann, “Lessons learned from mondrians applied to real images and color gamuts,” in 7th Color Imaging Conference: Color Science, Systems and Applications (1999), pp. 1–8.

J. McCann and A. Rizzi, The Art and Science of HDR Imaging, 1st ed. (Wiley, 2012), Chap. 13, pp. 119–121.

Mees, C.

C. Mees, The Fundamentals of Photography, 2nd ed. (Eastman Kodak, 1921).

Mertens, T.

T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in 15th Pacific Conference on Computer Graphics and Applications (2007), pp. 382–390.

Meylan, L.

Miller, D. D.

N. Miller, P. Y. Ngai, and D. D. Miller, “The application of computer graphics in lighting design,” J. Illum. Eng. Soc. 14, 6–26 (1984).
[Crossref]

Miller, N.

N. Miller, P. Y. Ngai, and D. D. Miller, “The application of computer graphics in lighting design,” J. Illum. Eng. Soc. 14, 6–26 (1984).
[Crossref]

Montage, E.

E. Montage, “Louis leon thurstone in monte carlo: creating error bars for the method of paired comparison,” Proc. SPIE 5294, 222–230 (2004).
[Crossref]

Myszkowski, K.

T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
[Crossref]

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
[Crossref]

F. Drago, W. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” in ACM SIGGRAPH Conference Abstracts and Applications (2003).

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” in Human Vision & Electronic Imaging X (SPIE, 2005).

G. Krawczyk, K. Myszkowski, and H. Seidel, “Lightness perception in tone reproduction for high dynamic range images,” in Proceedings of Eurographics (2005), p. 3.

F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” in Proceedings of Eurographics (2003), Vol. 22.

Neumann, L.

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
[Crossref]

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Image attributes and quality for evaluation of tone mapping operators,” in 14th Pacific Conference on Computer Graphics and Applications (2006), pp. 35–44.

Ngai, P. Y.

N. Miller, P. Y. Ngai, and D. D. Miller, “The application of computer graphics in lighting design,” J. Illum. Eng. Soc. 14, 6–26 (1984).
[Crossref]

Otazu, X.

X. Otazu, C. A. Parraga, and M. Vanrell, “Toward a unified chromatic induction model,” J. Vis. 10(12), 5 (2010).
[Crossref]

X. Otazu, M. Vanrell, and C. Parraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[Crossref]

X. Otazu, “Perceptual tone-mapping operator based on multiresolution contrast decomposition,” Perception 41 ECVP Abstract Supplement (2012), p. 86.

Parraga, C.

X. Otazu, M. Vanrell, and C. Parraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[Crossref]

Parraga, C. A.

X. Otazu, C. A. Parraga, and M. Vanrell, “Toward a unified chromatic induction model,” J. Vis. 10(12), 5 (2010).
[Crossref]

Parraman, C.

J. McCann, C. Parraman, and A. Rizzi, “Reflectance, illumination, and appearance in color constancy,” Front. Psychol. 5, 5 (2014).
[Crossref]

C. Parraman, “The drama of illumination: artist’s approaches to the creation of hdr in paintings and prints,” Proc. SPIE 7527, 75270U (2010).
[Crossref]

Pattanaik, S.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 1st ed. (Morgan Kaufmann, 2005), Chap. 6, pp. 187–221.

J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (ACM, 1996), pp. 249–258.

Provenzi, E.

S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
[Crossref]

Reinhard, E.

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

E. Reinhard and K. Devlin, “Dynamic range reduction inspired by photoreceptor physiology,” IEEE Trans. Vis. Comput. Graph. 11, 13–24 (2005).
[Crossref]

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
[Crossref]

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 1st ed. (Morgan Kaufmann, 2005), Chap. 6, pp. 187–221.

Riecke, B.

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

Rizzi, A.

J. McCann, C. Parraman, and A. Rizzi, “Reflectance, illumination, and appearance in color constancy,” Front. Psychol. 5, 5 (2014).
[Crossref]

J. McCann and A. Rizzi, The Art and Science of HDR Imaging, 1st ed. (Wiley, 2012), Chap. 13, pp. 119–121.

Ruppertsberg, A.

A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
[Crossref]

Rushmeier, H.

J. Tumblin and H. Rushmeier, “Tone reproduction for realistic images,” IEEE Comput. Graph. Appl. 13, 42–48 (1993).
[Crossref]

Seetzen, H.

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
[Crossref]

Seidel, H.

T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
[Crossref]

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
[Crossref]

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” in Human Vision & Electronic Imaging X (SPIE, 2005).

F. Drago, W. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” in ACM SIGGRAPH Conference Abstracts and Applications (2003).

G. Krawczyk, K. Myszkowski, and H. Seidel, “Lightness perception in tone reproduction for high dynamic range images,” in Proceedings of Eurographics (2005), p. 3.

Sharan, L.

Y. Li, L. Sharan, and E. Adelson, “Compressing and companding high dynamic range images with subband architectures,” ACM Trans. Graph. 24, 836–844 (2005).
[Crossref]

Shirley, P.

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
[Crossref]

J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (ACM, 1996), pp. 249–258.

Snowden, R.

R. Snowden, P. Thompson, and T. Troscianko, Basic Vision an Introduction to Visual Perception (Oxford University, 2006).

Spehar, B.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Stark, M.

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
[Crossref]

Süsstrunk, S.

Thompson, P.

R. Snowden, P. Thompson, and T. Troscianko, Basic Vision an Introduction to Visual Perception (Oxford University, 2006).

Troscianko, T.

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
[Crossref]

R. Snowden, P. Thompson, and T. Troscianko, Basic Vision an Introduction to Visual Perception (Oxford University, 2006).

Tumblin, J.

J. Tumblin and H. Rushmeier, “Tone reproduction for realistic images,” IEEE Comput. Graph. Appl. 13, 42–48 (1993).
[Crossref]

P. Choudhury and J. Tumblin, “The trilateral filter for high contrast images and meshes,” in Proceedings of the Eurographics Symposium on Rendering (2003), pp. 186–196.

Van Reeth, F.

T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in 15th Pacific Conference on Computer Graphics and Applications (2007), pp. 382–390.

Vanrell, M.

X. Otazu, C. A. Parraga, and M. Vanrell, “Toward a unified chromatic induction model,” J. Vis. 10(12), 5 (2010).
[Crossref]

X. Otazu, M. Vanrell, and C. Parraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[Crossref]

Wang, Z.

H. Yeganeh and Z. Wang, “Objective quality assessment of tone-mapped images,” IEEE Trans. Image Process. 22, 657–667 (2013).
[Crossref]

Ward, G.

G. Ward, A Contrast-Based Scalefactor for Luminance Display (Academic, 1994), pp. 415–421.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 1st ed. (Morgan Kaufmann, 2005), Chap. 6, pp. 187–221.

Werman, M.

R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range compression,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 249–256.

Wimmer, M.

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
[Crossref]

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Image attributes and quality for evaluation of tone mapping operators,” in 14th Pacific Conference on Computer Graphics and Applications (2006), pp. 35–44.

Yamaguchi, H.

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild, “Testing hdr image rendering algortihms,” in IS&T/SID 12th Color Imaging Conference (2004).

Yeganeh, H.

H. Yeganeh and Z. Wang, “Objective quality assessment of tone-mapped images,” IEEE Trans. Image Process. 22, 657–667 (2013).
[Crossref]

Yoshida, A.

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
[Crossref]

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” in Human Vision & Electronic Imaging X (SPIE, 2005).

ACM Trans. Appl. Percept. (2)

M. Ashikhmin and J. Goyal, “A reality check for tone-mapping operators,” ACM Trans. Appl. Percept. 3, 399–411 (2006).
[Crossref]

J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating hdr rendering algorithms,” ACM Trans. Appl. Percept. 4, 1–27 (2007).
[Crossref]

ACM Trans. Graph. (5)

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” ACM Trans. Graph. 24, 640–648 (2005).
[Crossref]

T. Aydin, R. Mantiuk, K. Myszkowski, and H. Seidel, “Dynamic range independent image quality assessment,” ACM Trans. Graph. 27, 69 (2008).
[Crossref]

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Trans. Graph. 21, 267–276 (2002).
[Crossref]

A. Akyüz, R. Fleming, B. Riecke, E. Reinhard, and H. Bülthoff, “Do hdr displays support ldr content? A psychophysical evaluation,” ACM Trans. Graph. 26, 38 (2007).
[Crossref]

Y. Li, L. Sharan, and E. Adelson, “Compressing and companding high dynamic range images with subband architectures,” ACM Trans. Graph. 24, 836–844 (2005).
[Crossref]

Am. Sci. (1)

E. Land, “The retinex,” Am. Sci. 52, 247–253, 255–264 (1964).

Biometrika (1)

M. Kendall and B. Babington-Smith, “On the method of paired comparisons,” Biometrika 31, 324–345 (1940).
[Crossref]

Comput. Graph. (1)

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of hdr tone mapping methods using essential perceptual attributes,” Comput. Graph. 32, 330–349 (2008).
[Crossref]

Front. Psychol. (1)

J. McCann, C. Parraman, and A. Rizzi, “Reflectance, illumination, and appearance in color constancy,” Front. Psychol. 5, 5 (2014).
[Crossref]

IEEE Comput. Graph. Appl. (1)

J. Tumblin and H. Rushmeier, “Tone reproduction for realistic images,” IEEE Comput. Graph. Appl. 13, 42–48 (1993).
[Crossref]

IEEE Trans. Image Process. (1)

H. Yeganeh and Z. Wang, “Objective quality assessment of tone-mapped images,” IEEE Trans. Image Process. 22, 657–667 (2013).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Ferradans, M. Bertalmío, E. Provenzi, and V. Caselles, “An analysis of visual adaptation and contrast perception for tone mapping,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

E. Reinhard and K. Devlin, “Dynamic range reduction inspired by photoreceptor physiology,” IEEE Trans. Vis. Comput. Graph. 11, 13–24 (2005).
[Crossref]

J. Electron. Imaging (3)

J. McCann, “Capturing a black cat in shade: past and present of retinex color appearance models,” J. Electron. Imaging 13, 36–47 (2004).
[Crossref]

J. McCann, “Retinex at 50: color theory and spatial algorithms, a review,” J. Electron. Imaging 26, 031204 (2017).
[Crossref]

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Testing tone mapping operators with human-perceived reality,” J. Electron. Imaging 16, 013004 (2007).
[Crossref]

J. Illum. Eng. Soc. (1)

N. Miller, P. Y. Ngai, and D. D. Miller, “The application of computer graphics in lighting design,” J. Illum. Eng. Soc. 14, 6–26 (1984).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Physiol. (3)

H. Barlow, “Summation and inhibition in the frogs retina,” J. Physiol. 119, 69–88 (1953).
[Crossref]

A. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

C. Blakemore and F. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
[Crossref]

J. Soc. Inf. Disp. (1)

J. McCann, “Art, science, and appearance in HDR,” J. Soc. Inf. Disp. 15, 709–719 (2007).
[Crossref]

J. Vis. (2)

J. Ferwerda and S. Luka, “A high resolution, high dynamic range display system for vision research,” J. Vis. 9(8), 346 (2009).
[Crossref]

X. Otazu, C. A. Parraga, and M. Vanrell, “Toward a unified chromatic induction model,” J. Vis. 10(12), 5 (2010).
[Crossref]

J. Vis. Commun. Image Represent. (1)

J. Kuang, G. Johnson, and M. Fairchild, “icam06: a refined image appearance model for hdr image rendering,” J. Vis. Commun. Image Represent. 18, 406–414 (2007).
[Crossref]

J. Visual Commun. Image Represent. (1)

A. Ruppertsberg, M. Bloj, F. Banterle, and A. Chalmers, “Displaying colourimetrically calibrated images on a high dynamic range display,” J. Visual Commun. Image Represent. 18, 429–438 (2007).
[Crossref]

Proc. SPIE (2)

C. Parraman, “The drama of illumination: artist’s approaches to the creation of hdr in paintings and prints,” Proc. SPIE 7527, 75270U (2010).
[Crossref]

E. Montage, “Louis leon thurstone in monte carlo: creating error bars for the method of paired comparison,” Proc. SPIE 5294, 222–230 (2004).
[Crossref]

Psychol. Rev. (1)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
[Crossref]

Vis. Res. (1)

X. Otazu, M. Vanrell, and C. Parraga, “Multiresolution wavelet framework models brightness induction effects,” Vis. Res. 48, 733–751 (2008).
[Crossref]

Other (23)

J. McCann, “Lessons learned from mondrians applied to real images and color gamuts,” in 7th Color Imaging Conference: Color Science, Systems and Applications (1999), pp. 1–8.

F. Drago, W. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” in ACM SIGGRAPH Conference Abstracts and Applications (2003).

J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild, “Testing hdr image rendering algortihms,” in IS&T/SID 12th Color Imaging Conference (2004).

A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” in Human Vision & Electronic Imaging X (SPIE, 2005).

M. Cadík, M. Wimmer, L. Neumann, and A. Artusi, “Image attributes and quality for evaluation of tone mapping operators,” in 14th Pacific Conference on Computer Graphics and Applications (2006), pp. 35–44.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 1st ed. (Morgan Kaufmann, 2005), Chap. 6, pp. 187–221.

R. Snowden, P. Thompson, and T. Troscianko, Basic Vision an Introduction to Visual Perception (Oxford University, 2006).

T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in 15th Pacific Conference on Computer Graphics and Applications (2007), pp. 382–390.

G. Ward, A Contrast-Based Scalefactor for Luminance Display (Academic, 1994), pp. 415–421.

M. Kim and J. Kautz, “Consistent tone reproduction,” in Proceedings of Computer Graphics and Imaging (2008).

G. Krawczyk, K. Myszkowski, and H. Seidel, “Lightness perception in tone reproduction for high dynamic range images,” in Proceedings of Eurographics (2005), p. 3.

J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg, “A model of visual adaptation for realistic image synthesis,” in Proceedings of ACM SIGGRAPH (ACM, 1996), pp. 249–258.

M. Ashikhmin, “A tone mapping algorithm for high contrast images,” in 13th Eurographics Workshop on Rendering (2002).

F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high dynamic-range images,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 257–266.

R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high dynamic range compression,” in Proceedings of ACM SIGGRAPH (ACM, 2002), pp. 249–256.

F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” in Proceedings of Eurographics (2003), Vol. 22.

“Camera calibration methods,” 2018, http://www.cvc.uab.es/color_calibration/CameraCal2.htm .

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (AK Peters, CRC Press, 2011).

M. Fairchild and G. Johnson, “Rendering hdr images,” in 11th Color Imaging Conference (IS&T/SID, 2000), pp. 108–111.

P. Choudhury and J. Tumblin, “The trilateral filter for high contrast images and meshes,” in Proceedings of the Eurographics Symposium on Rendering (2003), pp. 186–196.

J. McCann and A. Rizzi, The Art and Science of HDR Imaging, 1st ed. (Wiley, 2012), Chap. 13, pp. 119–121.

C. Mees, The Fundamentals of Photography, 2nd ed. (Eastman Kodak, 1921).

X. Otazu, “Perceptual tone-mapping operator based on multiresolution contrast decomposition,” Perception 41 ECVP Abstract Supplement (2012), p. 86.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. To show the general appearance of the physical scenes, here we show a single LDR exposure (chosen by simple visual inspection by the authors) from the set of LDR exposures used to create the HDR images. Since they are a single LDR exposure, the cuboids in the dark regions are not completely visible in these pictures.
Fig. 2.
Fig. 2. In Experiment 1, observers performed two tasks. In Task 1 [Fig. 2(a)], observers had to match the brightnesses of the five cuboids’ facets to the brightnesses of five patches in the reference table. In Task 2 [Fig. 2(b)], observers had to perform the same task on the TMO image displayed on the calibrated monitor. (Red arrows are randomly drawn for illustrative purposes).
Fig. 3.
Fig. 3. Results of Experiment 1. Segment matches in the tone-mapped images are plotted against segment matches in the real scene. Markers and lines identify each TMO. Since not all the data had a normal distribution, the markers show the median of the subjects’ observations. Horizontal lines indicate the first and the third quartiles of Task 1, and vertical lines indicate the first and the third quartiles of Task 2. For each operator, we fitted a linear model using the median of the subjects’ observations. The figure is divided in four panels for clarity. The real scene is plotted against itself in all panels to provide a fixed reference ( y = x ). In summary, the better the TMO, the closer its fit to the solid black line.
Fig. 4.
Fig. 4. RMSE with respect to the real scene ( RMSE scene ) is the difference between segments matched in the tone-mapped image and in the real scene. Different types of lines and markers represent different TMOs. The abscissa represents the segments matched in the real scene ordered from darkest to brightest. According to this metric, the smaller the value, the better the TMO.
Fig. 5.
Fig. 5. Case V Thurstone’s law scores for each evaluated TMO for each different scene. Thurstone scores are an arbitrary measure that shows how many times a particular TMO is better than the other ones. Thus, in that case, the higher score, the better TMO. Vertical lines show the 95% confidence limits.

Tables (6)

Tables Icon

Table 1. Summary of Used TMO Characteristics a

Tables Icon

Table 2. L* CIELab Color Space Values and Luminance Values ( cd / m 2 ) of Each Patch in the Reference Table a

Tables Icon

Table 3. Photometric Assessment of the Scene Facets Used in Our Matching Experiments a

Tables Icon

Table 4. Performance of All TMOs in the Segment Matching Experiment a

Tables Icon

Table 5. Summary of All Statistical Analysis from Section 4.B.4 a

Tables Icon

Table 6. Ranking Obtained by Averaging the Scores Given by Case V Thurstone’s Law in the Three Different Scenes a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ζ st = { 1 24 d st n 3 n , if n is odd 1 24 d st n 3 4 n , if n is even , with d st = n ( n 1 ) ( 2 n 1 ) 12 1 2 i = 1 n a ist 2 ,
u s = 2 i j ( p i j 2 ) ( m 2 ) ( n 2 ) 1 ,
χ s 2 = n ( n 1 ) ( 1 + u s ( m 1 ) ) 2 .

Metrics