Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Negative optical radiation force and spin torques on subwavelength prolate and oblate spheroids in fractional BesselGauss pincers light-sheets

Not Accessible

Your library or personal account may give you access

Abstract

Fractional Bessel–Gauss light-sheets [J. Opt. 19, 055602 (2017) [CrossRef]  ], which correspond to finite optical “slices” in 2D and possess asymmetric slit openings and bending characteristics, are examined from the standpoint of optical radiation force and spin torque theories for a subwavelength spheroid with arbitrary orientation in space. The vector angular spectrum decomposition method in addition to the Lorenz gauge condition and Maxwell’s equations are used to determine the Cartesian components of the incident radiated electric field of the Bessel–Gauss light-sheets. In the framework of the dipole approximation, the numerical results for the Cartesian components of the optical radiation force and spin torque vectors show that negative forces (oriented in the opposite direction of wave motion) and spin torques arise depending on the beam parameters, the orientation of the subwavelength spheroid in 3D space, and its aspect ratio (i.e., prolate versus oblate). The spin torque sign reversal reveals that counter-clockwise or clockwise rotations around the center of mass of the spheroid can occur. The results find important applications in the application of auto-focusing light-sheets in particle manipulation, rotation, and optical sorting devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved