Abstract

We investigate the application of dynamic metasurface antennas (DMAs) to synthetic aperture radar (SAR) systems. Metasurface antennas can generate a multitude of tailored electromagnetic waveforms from a physical platform that is low-cost, lightweight, and planar; these characteristics are not readily available with traditional SAR technologies, such as phased arrays and mechanically steered systems. We show that electronically tuned DMAs can generate steerable, directive beams for traditional stripmap and spotlight SAR imaging modes. This capability eliminates the need for mechanical gimbals and phase shifters, simplifying the hardware architecture of a SAR system. Additionally, we discuss alternative imaging modalities, including enhanced resolution stripmap and diverse pattern stripmap, which can achieve resolution on par with spotlight, while maintaining a large region-of-interest, as possible with stripmap. Further consideration is given to strategies for integrating metasurfaces with chirped pulse RF sources. DMAs are poised to propel SAR systems forward by offering a vast range of capabilities from a significantly improved physical platform.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture

Aaron V. Diebold, Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith
Appl. Opt. 57(9) 2142-2149 (2018)

X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna

Claire M. Watts, Andreas Pedross-Engel, David R. Smith, and Matthew S. Reynolds
J. Opt. Soc. Am. B 34(2) 300-306 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Brown and L. J. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectrum 6, 52–62 (1969).
    [Crossref]
  2. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).
  3. M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999).
  4. G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing (CRC Press, 1999).
  5. A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.
  6. T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
    [Crossref]
  7. H. A. Zebker and R. M. Goldstein, “Topographic mapping from interferometric synthetic aperture radar observations,” J. Geophys. Res. 91, 4993–4999 (1986).
    [Crossref]
  8. Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. Geosci. Remote Sens. 30, 370–381 (1992).
    [Crossref]
  9. R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
    [Crossref]
  10. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49, 1581–1592 (2001).
  11. S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011).
  12. S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
    [Crossref]
  13. B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
    [Crossref]
  14. Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
    [Crossref]
  15. T. Lewis and H. Hutchins, “A synthetic aperture at optical frequencies,” Proc. IEEE 58, 587–588 (1970).
    [Crossref]
  16. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44, 7621–7629 (2005).
    [Crossref]
  17. B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.
  18. M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
    [Crossref]
  19. H. Cantalloube and P. Dubois-Fernandez, “Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results,” Proc. IEE 153, 163–176 (2006).
  20. R. C. Hansen, Phased Array Antennas (Wiley, 2009), Vol. 213.
  21. J. Way and E. A. Smith, “The evolution of synthetic aperture radar systems and their progression to the EOS SAR,” IEEE Trans. Geosci. Remote Sens. 29, 962–985 (1991).
    [Crossref]
  22. M. Stangl, R. Werninghaus, and R. Zahn, “The TerraSAR-X active phased array antenna,” in IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2003), pp. 70–75.
  23. R. Werninghaus and S. Buckreuss, “The TerraSAR-X mission and system design,” IEEE Trans. Geosci. Remote Sens. 48, 606–614 (2010).
    [Crossref]
  24. J. E. Stailey and K. D. Hondl, “Multifunction phased array radar for aircraft and weather surveillance,” Proc. IEEE 104, 649–659 (2016).
    [Crossref]
  25. J. Cimino, C. Elachi, and M. Settle, “SIR-B-the second shuttle imaging radar experiment,” IEEE Trans. Geosci. Remote Sens. GE-24, 445–452 (1986).
    [Crossref]
  26. J.-H. Kim, A. Ossowska, and W. Wiesbeck, “Investigation of MIMO SAR for interferometry,” in European Radar Conference (EuRAD) (IEEE, 2007), pp. 51–54.
  27. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
  28. M. Johnson, “Opening satellite capacity to consumers with metamaterial antennas,” in International Conference on Metamaterials, Photonic Crystals and Plasmonics (2016).
  29. T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
    [Crossref]
  30. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  31. T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
    [Crossref]
  32. I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
    [Crossref]
  33. C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34, 300–306 (2017).
    [Crossref]
  34. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
  35. M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
    [Crossref]
  36. D. P. Belcher and C. J. Baker, “Hybrid strip-map/spotlight SAR,” in IEE Colloquium on Radar and Microwave Imaging (IET, 1994), pp. 2/1–2/7.
  37. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  38. D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
    [Crossref]
  39. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [Crossref]
  40. D. Carsenat and C. Decroze, “UWB antennas beamforming using passive time-reversal device,” IEEE Antennas Wireless Propag. Lett. 11, 779–782 (2012).
    [Crossref]
  41. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  42. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
    [Crossref]
  43. T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).
  44. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
  45. D. P. Belcher and C. J. Baker, “High resolution processing of hybrid strip-map/spotlight mode SAR,” Proc. IEE 143, 366–374 (1996).
  46. C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microwave Theory Tech. 51, 573–577 (2003).
    [Crossref]
  47. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
    [Crossref]
  48. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  49. Y. K. Chan and V. C. Koo, “An introduction to synthetic aperture radar (SAR),” Prog. Electromagn. Res. B 2, 27–60 (2008).
  50. P. T. Bowen, M. Boyarsky, L. Pulido-Mancera, and D. R. Smith, Optimizing beam performance of metasurface antennas with Euclidean modulation (in preparation).
  51. C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.
  52. K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).
  53. K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.
  54. A. Ghosh, M. A. Powers, and V. M. Patel, “Computational LADAR imaging,” Appl. Opt. 56, B191–B197 (2017).
    [Crossref]
  55. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook (1993), Vol. 4, p. 12.
  56. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
    [Crossref]
  57. J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref]
  58. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
    [Crossref]
  59. O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).
  60. G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24, 19372–19387 (2016).
    [Crossref]
  61. S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62, 183–198 (2014).
    [Crossref]
  62. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
    [Crossref]
  63. Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
    [Crossref]
  64. A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propag. 50, 1494–1504 (2002).
    [Crossref]
  65. A. Grbic and G. V. Eleftheriades, “A backward-wave antenna based on negative refractive index LC networks,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2002), Vol. 4, pp. 340–343.
  66. D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook (2008), pp. 325–367.
  67. C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
  68. L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability,” Electron. Lett. 38, 1 (2002).
    [Crossref]
  69. T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
    [Crossref]
  70. M. Nannetti, F. Caminita, and S. Maci, “Leaky-wave based interpretation of the radiation from holographic surfaces,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 5813–5816.
  71. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
    [Crossref]
  72. G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
    [Crossref]
  73. R. Quarfoth and D. Sievenpiper, “Artificial tensor impedance surface waveguides,” IEEE Trans. Antennas Propag. 61, 3597–3606 (2013).
    [Crossref]
  74. A. M. Patel and A. Grbic, “Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS),” IEEE Trans. Microwave Theory Tech. 61, 1403–1413 (2013).
    [Crossref]
  75. J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
    [Crossref]
  76. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref]
  77. S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microwave Theory Tech. 52, 2678–2690 (2004).
    [Crossref]
  78. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).
  79. D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
    [Crossref]
  80. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
    [Crossref]
  81. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
  82. J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.
  83. A. M. Patel and A. Grbic, “Modeling and analysis of printed-circuit tensor impedance surfaces,” IEEE Trans. Antennas Propag. 61, 211–220 (2013).
    [Crossref]
  84. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
    [Crossref]
  85. F. Ulaby and D. B. Lang, “A strategy for active remote sensing amid increased demand for spectrum,” in USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (IEEE, 2015), pp. 263.
  86. N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. 11, 453–467 (2013).
    [Crossref]
  87. H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).
  88. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
    [Crossref]
  89. T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
    [Crossref]
  90. A. D. Scher and E. F. Kuester, “Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles,” Metamaterials 3, 44–55 (2009).
    [Crossref]
  91. R. E. Collin, Field Theory of Guided Waves (1960).
  92. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005), Vol. 1.
  93. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2012).
    [Crossref]
  94. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
    [Crossref]
  95. K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
    [Crossref]
  96. R. L. Jordan, “The Seasat-A synthetic aperture radar system,” IEEE J. Ocean. Eng. 5, 154–164 (1980).
    [Crossref]
  97. R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR synthetic aperture radar system,” IEEE Trans. Geosci. Remote Sens. 33, 829–839 (1995).
    [Crossref]
  98. W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.
  99. O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
  100. N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
    [Crossref]
  101. G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.
  102. S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (2014).
  103. M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).
  104. B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB (CRC Press, 2002).
  105. X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
    [Crossref]
  106. J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
    [Crossref]
  107. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
    [Crossref]
  108. M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).
  109. S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).
  110. C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
    [Crossref]
  111. O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
    [Crossref]
  112. P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8, 343–358 (1997).
    [Crossref]
  113. L. Rosenberg and D. Gray, “Anti-jamming techniques for multichannel SAR imaging,” Proc. IEE 153, 234–242 (2006).
  114. A. S. Paine, “An adaptive beamforming technique for countering synthetic aperture radar (SAR) jamming threats,” in IEEE Radar Conference (2007), pp. 630–634.
  115. A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.
  116. G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
    [Crossref]

2017 (4)

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34, 300–306 (2017).
[Crossref]

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

A. Ghosh, M. A. Powers, and V. M. Patel, “Computational LADAR imaging,” Appl. Opt. 56, B191–B197 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

2016 (11)

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24, 19372–19387 (2016).
[Crossref]

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

J. E. Stailey and K. D. Hondl, “Multifunction phased array radar for aircraft and weather surveillance,” Proc. IEEE 104, 649–659 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

2015 (6)

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

2014 (7)

T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
[Crossref]

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62, 183–198 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
[Crossref]

2013 (11)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
[Crossref]

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. 11, 453–467 (2013).
[Crossref]

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).

A. M. Patel and A. Grbic, “Modeling and analysis of printed-circuit tensor impedance surfaces,” IEEE Trans. Antennas Propag. 61, 211–220 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

R. Quarfoth and D. Sievenpiper, “Artificial tensor impedance surface waveguides,” IEEE Trans. Antennas Propag. 61, 3597–3606 (2013).
[Crossref]

A. M. Patel and A. Grbic, “Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS),” IEEE Trans. Microwave Theory Tech. 61, 1403–1413 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

2012 (5)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

D. Carsenat and C. Decroze, “UWB antennas beamforming using passive time-reversal device,” IEEE Antennas Wireless Propag. Lett. 11, 779–782 (2012).
[Crossref]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2012).
[Crossref]

2011 (4)

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011).

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
[Crossref]

2010 (2)

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

R. Werninghaus and S. Buckreuss, “The TerraSAR-X mission and system design,” IEEE Trans. Geosci. Remote Sens. 48, 606–614 (2010).
[Crossref]

2009 (2)

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

A. D. Scher and E. F. Kuester, “Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles,” Metamaterials 3, 44–55 (2009).
[Crossref]

2008 (4)

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
[Crossref]

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).

Y. K. Chan and V. C. Koo, “An introduction to synthetic aperture radar (SAR),” Prog. Electromagn. Res. B 2, 27–60 (2008).

2007 (2)

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref]

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

2006 (3)

L. Rosenberg and D. Gray, “Anti-jamming techniques for multichannel SAR imaging,” Proc. IEE 153, 234–242 (2006).

S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).

H. Cantalloube and P. Dubois-Fernandez, “Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results,” Proc. IEE 153, 163–176 (2006).

2005 (1)

2004 (1)

S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microwave Theory Tech. 52, 2678–2690 (2004).
[Crossref]

2003 (2)

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microwave Theory Tech. 51, 573–577 (2003).
[Crossref]

2002 (3)

L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability,” Electron. Lett. 38, 1 (2002).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propag. 50, 1494–1504 (2002).
[Crossref]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49, 1581–1592 (2001).

2000 (1)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

1998 (1)

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

1997 (1)

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8, 343–358 (1997).
[Crossref]

1996 (2)

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
[Crossref]

D. P. Belcher and C. J. Baker, “High resolution processing of hybrid strip-map/spotlight mode SAR,” Proc. IEE 143, 366–374 (1996).

1995 (1)

R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR synthetic aperture radar system,” IEEE Trans. Geosci. Remote Sens. 33, 829–839 (1995).
[Crossref]

1992 (2)

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
[Crossref]

Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. Geosci. Remote Sens. 30, 370–381 (1992).
[Crossref]

1991 (2)

J. Way and E. A. Smith, “The evolution of synthetic aperture radar systems and their progression to the EOS SAR,” IEEE Trans. Geosci. Remote Sens. 29, 962–985 (1991).
[Crossref]

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

1986 (2)

H. A. Zebker and R. M. Goldstein, “Topographic mapping from interferometric synthetic aperture radar observations,” J. Geophys. Res. 91, 4993–4999 (1986).
[Crossref]

J. Cimino, C. Elachi, and M. Settle, “SIR-B-the second shuttle imaging radar experiment,” IEEE Trans. Geosci. Remote Sens. GE-24, 445–452 (1986).
[Crossref]

1980 (1)

R. L. Jordan, “The Seasat-A synthetic aperture radar system,” IEEE J. Ocean. Eng. 5, 154–164 (1980).
[Crossref]

1970 (1)

T. Lewis and H. Hutchins, “A synthetic aperture at optical frequencies,” Proc. IEEE 58, 587–588 (1970).
[Crossref]

1969 (1)

W. M. Brown and L. J. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectrum 6, 52–62 (1969).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

Ager, T. P.

T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
[Crossref]

Ahmed, S. S.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011).

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (2014).

Ala-Laurinaho, J.

T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
[Crossref]

Allan, G.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Alvarez, Y.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Arnitz, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Averitt, R. D.

Baker, C. J.

D. P. Belcher and C. J. Baker, “High resolution processing of hybrid strip-map/spotlight mode SAR,” Proc. IEE 143, 366–374 (1996).

D. P. Belcher and C. J. Baker, “Hybrid strip-map/spotlight SAR,” in IEE Colloquium on Radar and Microwave Imaging (IET, 1994), pp. 2/1–2/7.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005), Vol. 1.

Baldi, C.

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Beck, S. M.

Belcher, D. P.

D. P. Belcher and C. J. Baker, “High resolution processing of hybrid strip-map/spotlight mode SAR,” Proc. IEE 143, 366–374 (1996).

D. P. Belcher and C. J. Baker, “Hybrid strip-map/spotlight SAR,” in IEE Colloquium on Radar and Microwave Imaging (IET, 1994), pp. 2/1–2/7.

Berkowitz, B.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Bingham, C.

Boerner, E.

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

Bordoni, F.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Bossard, J. A.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Bowen, P. T.

P. T. Bowen, M. Boyarsky, L. Pulido-Mancera, and D. R. Smith, Optimizing beam performance of metasurface antennas with Euclidean modulation (in preparation).

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Boyarsky, M.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

P. T. Bowen, M. Boyarsky, L. Pulido-Mancera, and D. R. Smith, Optimizing beam performance of metasurface antennas with Euclidean modulation (in preparation).

Brady, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Brady, D. J.

Breit, H.

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

Brown, W. M.

W. M. Brown and L. J. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectrum 6, 52–62 (1969).
[Crossref]

Brunton, S. L.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).

Buck, J. R.

Buckreuss, S.

R. Werninghaus and S. Buckreuss, “The TerraSAR-X mission and system design,” IEEE Trans. Geosci. Remote Sens. 48, 606–614 (2010).
[Crossref]

Buell, W. F.

Burns, B.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

Cafforio, C.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

Caira, N. W.

Caloz, C.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).

S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microwave Theory Tech. 52, 2678–2690 (2004).
[Crossref]

L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability,” Electron. Lett. 38, 1 (2002).
[Crossref]

Caminita, F.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
[Crossref]

M. Nannetti, F. Caminita, and S. Maci, “Leaky-wave based interpretation of the radiation from holographic surfaces,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 5813–5816.

Cantalloube, H.

H. Cantalloube and P. Dubois-Fernandez, “Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results,” Proc. IEE 153, 163–176 (2006).

Carron, I.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Carsenat, D.

D. Carsenat and C. Decroze, “UWB antennas beamforming using passive time-reversal device,” IEEE Antennas Wireless Propag. Lett. 11, 779–782 (2012).
[Crossref]

Casaletti, M.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
[Crossref]

Chan, Y. K.

Y. K. Chan and V. C. Koo, “An introduction to synthetic aperture radar (SAR),” Prog. Electromagn. Res. B 2, 27–60 (2008).

Chardon, G.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Chattopadhyay, G.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Chen, H.-T.

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Cheng, Q.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Choi, K.

Choukroun, M.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Cimino, J.

J. Cimino, C. Elachi, and M. Settle, “SIR-B-the second shuttle imaging radar experiment,” IEEE Trans. Geosci. Remote Sens. GE-24, 445–452 (1986).
[Crossref]

Cochrane, C.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Cochrane, C. J.

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

Colbum, J.

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

Colburn, J. S.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Coldwell, C. M.

W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.

Collin, R. E.

R. E. Collin, Field Theory of Guided Waves (1960).

Cooper, K.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Cooper, K. B.

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

Cristman, P. F.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Cui, T. J.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Cummer, S. A.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
[Crossref]

Curlander, J. C.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).

Daudet, L.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Decroze, C.

D. Carsenat and C. Decroze, “UWB antennas beamforming using passive time-reversal device,” IEEE Antennas Wireless Propag. Lett. 11, 779–782 (2012).
[Crossref]

Dengler, R.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Dengler, R. J.

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

Diaz, A.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Dickinson, R. P.

Doerry, A. W.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Driscoll, T.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Dubbert, D.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

Dubbert, D. F.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Dubois-Fernandez, P.

H. Cantalloube and P. Dubois-Fernandez, “Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results,” Proc. IEE 153, 163–176 (2006).

Dupré, M.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
[Crossref]

Durden, S.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Durden, S. L.

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Eineder, M.

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

El Bouayadi, T.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Elachi, C.

J. Cimino, C. Elachi, and M. Settle, “SIR-B-the second shuttle imaging radar experiment,” IEEE Trans. Geosci. Remote Sens. GE-24, 445–452 (1986).
[Crossref]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propag. 50, 1494–1504 (2002).
[Crossref]

A. Grbic and G. V. Eleftheriades, “A backward-wave antenna based on negative refractive index LC networks,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2002), Vol. 4, pp. 340–343.

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Fan, K.

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

Fellerhoff, R.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

Feng, Q.

Ferro-Famil, L.

S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).

Fiedler, H.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Fink, M.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
[Crossref]

Fong, B.

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

Fong, B. H.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Fortuny-Guasch, J.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

Franceschetti, G.

G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing (CRC Press, 1999).

Fritz, T.

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

Fromenteze, T.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

Gandini, E.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Gebert, N.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Ghosh, A.

Gigan, S.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Goldstein, R. M.

H. A. Zebker and R. M. Goldstein, “Topographic mapping from interferometric synthetic aperture radar observations,” J. Geophys. Res. 91, 4993–4999 (1986).
[Crossref]

Gollub, J.

Gollub, J. N.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Gonzalez, D.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Gonzalez-Valdes, B.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

Gough, P. T.

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8, 343–358 (1997).
[Crossref]

Gowda, V. R.

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

Gray, D.

L. Rosenberg and D. Gray, “Anti-jamming techniques for multichannel SAR imaging,” Proc. IEE 153, 234–242 (2006).

Grbic, A.

A. M. Patel and A. Grbic, “Modeling and analysis of printed-circuit tensor impedance surfaces,” IEEE Trans. Antennas Propag. 61, 211–220 (2013).
[Crossref]

A. M. Patel and A. Grbic, “Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS),” IEEE Trans. Microwave Theory Tech. 61, 1403–1413 (2013).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propag. 50, 1494–1504 (2002).
[Crossref]

A. Grbic and G. V. Eleftheriades, “A backward-wave antenna based on negative refractive index LC networks,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2002), Vol. 4, pp. 340–343.

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Guillaso, S.

S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).

Gumbmann, F.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

Guney, D.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).

Gutierrez, V. D.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Hajnsek, I.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49, 1581–1592 (2001).

Hand, T. H.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
[Crossref]

Hansen, R. C.

R. C. Hansen, Phased Array Antennas (Wiley, 2009), Vol. 213.

Hawkins, D. W.

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8, 343–358 (1997).
[Crossref]

Herd, J. S.

W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.

Herz, P.

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

Highstrete, C.

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

Hondl, K. D.

J. E. Stailey and K. D. Hondl, “Multifunction phased array radar for aircraft and weather surveillance,” Proc. IEEE 104, 649–659 (2016).
[Crossref]

Horisaki, R.

Hounam, D.

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

Hu, C.

Huber, S.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Hum, S. V.

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62, 183–198 (2014).
[Crossref]

Huneycutt, B. L.

R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR synthetic aperture radar system,” IEEE Trans. Geosci. Remote Sens. 33, 829–839 (1995).
[Crossref]

Hunt, J.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. 11, 453–467 (2013).
[Crossref]

Hutchins, H.

T. Lewis and H. Hutchins, “A synthetic aperture at optical frequencies,” Proc. IEEE 58, 587–588 (1970).
[Crossref]

Imani, M. F.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

Inoue, Y.

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

Itoh, T.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).

S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microwave Theory Tech. 52, 2678–2690 (2004).
[Crossref]

L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability,” Electron. Lett. 38, 1 (2002).
[Crossref]

Jackson, D. R.

D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook (2008), pp. 325–367.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook (1993), Vol. 4, p. 12.

Johnson, M.

M. Johnson, “Opening satellite capacity to consumers with metamaterial antennas,” in International Conference on Metamaterials, Photonic Crystals and Plasmonics (2016).

Johnson, M. C.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).

Jordan, R. L.

R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR synthetic aperture radar system,” IEEE Trans. Geosci. Remote Sens. 33, 829–839 (1995).
[Crossref]

R. L. Jordan, “The Seasat-A synthetic aperture radar system,” IEEE J. Ocean. Eng. 5, 154–164 (1980).
[Crossref]

Kaina, N.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
[Crossref]

Katz, O.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Khoo, I.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Kim, J.-H.

J.-H. Kim, A. Ossowska, and W. Wiesbeck, “Investigation of MIMO SAR for interferometry,” in European Radar Conference (EuRAD) (IEEE, 2007), pp. 51–54.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Koo, V. C.

Y. K. Chan and V. C. Koo, “An introduction to synthetic aperture radar (SAR),” Prog. Electromagn. Res. B 2, 27–60 (2008).

Kozlowski, D. A.

Krieger, G.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Krieger, J. D.

W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

A. D. Scher and E. F. Kuester, “Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles,” Metamaterials 3, 44–55 (2009).
[Crossref]

Kundtz, N. B.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).

Lanari, R.

G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing (CRC Press, 1999).

Lancaster, P.

C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.

Landy, N.

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. 11, 453–467 (2013).
[Crossref]

Lang, D. B.

F. Ulaby and D. B. Lang, “A strategy for active remote sensing amid increased demand for spectrum,” in USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (IEEE, 2015), pp. 263.

Larouche, S.

Las-Heras, F.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Lee, M.

Lerosey, G.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
[Crossref]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Lewis, T.

T. Lewis and H. Hutchins, “A synthetic aperture at optical frequencies,” Proc. IEEE 58, 587–588 (1970).
[Crossref]

Li, L.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Li, L. L.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Li, Y. B.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Liang, X.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Lim, S.

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microwave Theory Tech. 52, 2678–2690 (2004).
[Crossref]

Lipworth, G.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24, 19372–19387 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Liu, L.

L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability,” Electron. Lett. 38, 1 (2002).
[Crossref]

Liutkus, A.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Llombart, N.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Loo, R. Y.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

Lopez-Sanchez, J. M.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

Luo, X.

MacCabe, K. P.

Maci, S.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
[Crossref]

M. Nannetti, F. Caminita, and S. Maci, “Leaky-wave based interpretation of the radiation from holographic surfaces,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 5813–5816.

Madsen, S. N.

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
[Crossref]

Mahafza, B. R.

B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB (CRC Press, 2002).

Majewski, J. J.

W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.

Mantzavinos, S.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Marechal, N. J.

Marks, D. L.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

Martina, D.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Martinez-Lorenzo, J.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

Martinez-Lorenzo, J. A.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Mayer, T. S.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

McDonough, R. N.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49, 1581–1592 (2001).

Methfessel, S.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

Minatti, G.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
[Crossref]

Mitchell, T. A.

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

Mittermayer, J.

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

Moghaddam, M.

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
[Crossref]

Monje, R.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Monje, R. R.

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Moran, M. S.

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

Moreira, A.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Moulder, W. F.

W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.

Mrozack, A.

Nannetti, M.

M. Nannetti, F. Caminita, and S. Maci, “Leaky-wave based interpretation of the radiation from holographic surfaces,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 5813–5816.

Nickerson, M.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

O’Hara, J. F.

O’sullivan, J. A.

Odabasi, H.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).

Oh, Y.

Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. Geosci. Remote Sens. 30, 370–381 (1992).
[Crossref]

Oliner, A. A.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook (1993), Vol. 4, p. 12.

D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook (2008), pp. 325–367.

Ossowska, A.

J.-H. Kim, A. Ossowska, and W. Wiesbeck, “Investigation of MIMO SAR for interferometry,” in European Radar Conference (EuRAD) (IEEE, 2007), pp. 51–54.

Ottusch, J.

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

Ottusch, J. J.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Padilla, W. J.

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref]

Paine, A. S.

A. S. Paine, “An adaptive beamforming technique for countering synthetic aperture radar (SAR) jamming threats,” in IEEE Radar Conference (2007), pp. 630–634.

Patel, A. M.

A. M. Patel and A. Grbic, “Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS),” IEEE Trans. Microwave Theory Tech. 61, 1403–1413 (2013).
[Crossref]

A. M. Patel and A. Grbic, “Modeling and analysis of printed-circuit tensor impedance surfaces,” IEEE Trans. Antennas Propag. 61, 211–220 (2013).
[Crossref]

Patel, V. M.

Patyuchenko, A.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Pedross-Engel, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34, 300–306 (2017).
[Crossref]

C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.

Perruisseau-Carrier, J.

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62, 183–198 (2014).
[Crossref]

Popoff, S.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Porcello, L. J.

W. M. Brown and L. J. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectrum 6, 52–62 (1969).
[Crossref]

Pottier, E.

S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).

Powers, M. A.

Prati, C.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

Pu, M.

Pulido-Mancera, L.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

P. T. Bowen, M. Boyarsky, L. Pulido-Mancera, and D. R. Smith, Optimizing beam performance of metasurface antennas with Euclidean modulation (in preparation).

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

Quarfoth, R.

R. Quarfoth and D. Sievenpiper, “Artificial tensor impedance surface waveguides,” IEEE Trans. Antennas Propag. 61, 3597–3606 (2013).
[Crossref]

Räisänen, A. V.

T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
[Crossref]

Rappaport, C.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

Rappaport, C. M.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Rauscher, C.

C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microwave Theory Tech. 51, 573–577 (2003).
[Crossref]

Reigber, A.

S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).

Rennings, A.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

Reynolds, M. S.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34, 300–306 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.

Riegger, S.

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

Rocca, F.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

Rodriguez-Vaqueiro, Y.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Rose, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

Rosenberg, L.

L. Rosenberg and D. Gray, “Anti-jamming techniques for multichannel SAR imaging,” Proc. IEE 153, 234–242 (2006).

Roth, A.

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

Rout, S.

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Sajuyigbe, S.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
[Crossref]

Sander, G.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

Sarabandi, K.

Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. Geosci. Remote Sens. 30, 370–381 (1992).
[Crossref]

Schaffner, J. H.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

Scher, A. D.

A. D. Scher and E. F. Kuester, “Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles,” Metamaterials 3, 44–55 (2009).
[Crossref]

Schiessl, A.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011).

Schmidt, L. P.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011).

Settelmeyer, E.

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

Settle, M.

J. Cimino, C. Elachi, and M. Settle, “SIR-B-the second shuttle imaging radar experiment,” IEEE Trans. Geosci. Remote Sens. GE-24, 445–452 (1986).
[Crossref]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49, 1581–1592 (2001).

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref]

Sievenpiper, D.

R. Quarfoth and D. Sievenpiper, “Artificial tensor impedance surface waveguides,” IEEE Trans. Antennas Propag. 61, 3597–3606 (2013).
[Crossref]

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

Sievenpiper, D. F.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

Simovski, C. R.

T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
[Crossref]

Skalare, A.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Sleasman, T.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

Smith, D. R.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34, 300–306 (2017).
[Crossref]

I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express 24, 28686–28692 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. R. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24, 19372–19387 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. 11, 453–467 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

P. T. Bowen, M. Boyarsky, L. Pulido-Mancera, and D. R. Smith, Optimizing beam performance of metasurface antennas with Euclidean modulation (in preparation).

Smith, E. A.

J. Way and E. A. Smith, “The evolution of synthetic aperture radar systems and their progression to the EOS SAR,” IEEE Trans. Geosci. Remote Sens. 29, 962–985 (1991).
[Crossref]

Smith, J. R.

C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.

Song, H. J.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

Sonkusale, S.

Soumekh, M.

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
[Crossref]

M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Stailey, J. E.

J. E. Stailey and K. D. Hondl, “Multifunction phased array radar for aircraft and weather surveillance,” Proc. IEEE 104, 649–659 (2016).
[Crossref]

Stangl, M.

M. Stangl, R. Werninghaus, and R. Zahn, “The TerraSAR-X active phased array antenna,” in IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2003), pp. 70–75.

Strikwerda, A. C.

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Tanelli, S.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Tang, A.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

Tangonan, G.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Taylor, A. J.

Teixeira, F.

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).

Thompson, M.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

Tiebout, M.

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

Treuhaft, R. N.

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
[Crossref]

Trofatter, K. P.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Trofatter, P.

Troufleau, D.

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

Ulaby, F.

F. Ulaby and D. B. Lang, “A strategy for active remote sensing amid increased demand for spectrum,” in USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (IEEE, 2015), pp. 263.

Ulaby, F. T.

Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. Geosci. Remote Sens. 30, 370–381 (1992).
[Crossref]

Vidal, A.

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Visher, J.

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

Visher, J. L.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Walker, B.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

Wan, X.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Watts, C. M.

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34, 300–306 (2017).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.

Way, J.

J. Way and E. A. Smith, “The evolution of synthetic aperture radar systems and their progression to the EOS SAR,” IEEE Trans. Geosci. Remote Sens. 29, 962–985 (1991).
[Crossref]

Weiner, B.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Werner, D. H.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Werner, M.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR synthetic aperture radar system,” IEEE Trans. Geosci. Remote Sens. 33, 829–839 (1995).
[Crossref]

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

Werninghaus, R.

R. Werninghaus and S. Buckreuss, “The TerraSAR-X mission and system design,” IEEE Trans. Geosci. Remote Sens. 48, 606–614 (2010).
[Crossref]

M. Stangl, R. Werninghaus, and R. Zahn, “The TerraSAR-X active phased array antenna,” in IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2003), pp. 70–75.

Wiesbeck, W.

J.-H. Kim, A. Ossowska, and W. Wiesbeck, “Investigation of MIMO SAR for interferometry,” in European Radar Conference (EuRAD) (IEEE, 2007), pp. 51–54.

Wright, T. J.

Wu, R. Y.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Wu, W.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Xu, B. B.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

Xu, W.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

Yarovoy, A. G.

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

Yoo, I.

Younis, M.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

Yun, S.

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

Yurduseven, O.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

Zahn, R.

M. Stangl, R. Werninghaus, and R. Zahn, “The TerraSAR-X active phased array antenna,” in IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2003), pp. 70–75.

Zebker, H. A.

H. A. Zebker and R. M. Goldstein, “Topographic mapping from interferometric synthetic aperture radar observations,” J. Geophys. Res. 91, 4993–4999 (1986).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Zhuge, X.

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

Zink, M.

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

Zvolensky, T.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
[Crossref]

Zyl, J. J.

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93, 212504 (2008).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Electron. Lett. (1)

L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability,” Electron. Lett. 38, 1 (2002).
[Crossref]

IEEE Access (1)

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).

IEEE Antennas Propag. Mag. (2)

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).

IEEE Antennas Wireless Propag. Lett. (2)

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

D. Carsenat and C. Decroze, “UWB antennas beamforming using passive time-reversal device,” IEEE Antennas Wireless Propag. Lett. 11, 779–782 (2012).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (2)

K. B. Cooper, S. L. Durden, C. J. Cochrane, R. R. Monje, R. J. Dengler, and C. Baldi, “Using FMCW doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett. 14, 339–343 (2017).

S. Guillaso, A. Reigber, L. Ferro-Famil, and E. Pottier, “Range resolution improvement of airborne SAR images,” IEEE Geosci. Remote Sens. Lett. 3, 135–139 (2006).

IEEE J. Ocean. Eng. (1)

R. L. Jordan, “The Seasat-A synthetic aperture radar system,” IEEE J. Ocean. Eng. 5, 154–164 (1980).
[Crossref]

IEEE Microw. Mag. (1)

S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, “Advanced microwave imaging,” IEEE Microw. Mag. 13(6), 26–43 (2012).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (1)

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wireless Compon. Lett. 26, 367–369 (2016).

IEEE Spectrum (1)

W. M. Brown and L. J. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectrum 6, 52–62 (1969).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

IEEE Trans. Antennas Propag. (13)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

A. M. Patel and A. Grbic, “Modeling and analysis of printed-circuit tensor impedance surfaces,” IEEE Trans. Antennas Propag. 61, 211–220 (2013).
[Crossref]

T. Zvolensky, J. Ala-Laurinaho, C. R. Simovski, and A. V. Räisänen, “A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range,” IEEE Trans. Antennas Propag. 62, 4153–4161 (2014).
[Crossref]

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner, B. Weiner, T. S. Mayer, P. F. Cristman, A. Diaz, and I. Khoo, “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag. 56, 1308–1320 (2008).
[Crossref]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
[Crossref]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antennas Propag. 59, 4436–4444 (2011).
[Crossref]

R. Quarfoth and D. Sievenpiper, “Artificial tensor impedance surface waveguides,” IEEE Trans. Antennas Propag. 61, 3597–3606 (2013).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag. 51, 2713–2722 (2003).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62, 183–198 (2014).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propag. 50, 1494–1504 (2002).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (8)

M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell, “Ku- and C-band SAR for discriminating agricultural crop and soil conditions,” IEEE Trans. Geosci. Remote Sens. 36, 265–272 (1998).
[Crossref]

J. Way and E. A. Smith, “The evolution of synthetic aperture radar systems and their progression to the EOS SAR,” IEEE Trans. Geosci. Remote Sens. 29, 962–985 (1991).
[Crossref]

R. Werninghaus and S. Buckreuss, “The TerraSAR-X mission and system design,” IEEE Trans. Geosci. Remote Sens. 48, 606–614 (2010).
[Crossref]

J. Cimino, C. Elachi, and M. Settle, “SIR-B-the second shuttle imaging radar experiment,” IEEE Trans. Geosci. Remote Sens. GE-24, 445–452 (1986).
[Crossref]

Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. Geosci. Remote Sens. 30, 370–381 (1992).
[Crossref]

R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR synthetic aperture radar system,” IEEE Trans. Geosci. Remote Sens. 33, 829–839 (1995).
[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 45, 3317–3341 (2007).
[Crossref]

IEEE Trans. Image Process. (1)

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49, 1581–1592 (2001).

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microw. Theory Tech. 59, 3567–3576 (2011).

IEEE Trans. Microwave Theory Tech. (3)

C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microwave Theory Tech. 51, 573–577 (2003).
[Crossref]

S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microwave Theory Tech. 52, 2678–2690 (2004).
[Crossref]

A. M. Patel and A. Grbic, “Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS),” IEEE Trans. Microwave Theory Tech. 61, 1403–1413 (2013).
[Crossref]

Int. J. Imaging Syst. Technol. (1)

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8, 343–358 (1997).
[Crossref]

J. Appl. Phys. (1)

H. Odabasi, F. Teixeira, and D. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113, 084903 (2013).

J. Geophys. Res. (1)

H. A. Zebker and R. M. Goldstein, “Topographic mapping from interferometric synthetic aperture radar observations,” J. Geophys. Res. 91, 4993–4999 (1986).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (3)

Mater. Today (1)

K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Mater. Today 18(1), 39–50 (2015).
[Crossref]

Metamaterials (1)

A. D. Scher and E. F. Kuester, “Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles,” Metamaterials 3, 44–55 (2009).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Nat. Photonics (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

Oceanography (1)

T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Nanostruct. (1)

N. Landy, J. Hunt, and D. R. Smith, “Homogenization analysis of complementary waveguide metamaterials,” Photon. Nanostruct. 11, 453–467 (2013).
[Crossref]

Phys. Rev. Appl. (1)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6, 054019 (2016).

Phys. Rev. Lett. (2)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref]

Proc. IEE (3)

L. Rosenberg and D. Gray, “Anti-jamming techniques for multichannel SAR imaging,” Proc. IEE 153, 234–242 (2006).

D. P. Belcher and C. J. Baker, “High resolution processing of hybrid strip-map/spotlight mode SAR,” Proc. IEE 143, 366–374 (1996).

H. Cantalloube and P. Dubois-Fernandez, “Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results,” Proc. IEE 153, 163–176 (2006).

Proc. IEEE (2)

J. E. Stailey and K. D. Hondl, “Multifunction phased array radar for aircraft and weather surveillance,” Proc. IEEE 104, 649–659 (2016).
[Crossref]

T. Lewis and H. Hutchins, “A synthetic aperture at optical frequencies,” Proc. IEEE 58, 587–588 (1970).
[Crossref]

Prog. Electromagn. Res. (1)

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

Prog. Electromagn. Res. B (1)

Y. K. Chan and V. C. Koo, “An introduction to synthetic aperture radar (SAR),” Prog. Electromagn. Res. B 2, 27–60 (2008).

Radio Sci. (1)

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. Zyl, “Vegetation characteristics and underlying topography from interferometric radar,” Radio Sci. 31, 1449–1485 (1996).
[Crossref]

Sci. Rep. (4)

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: compressive imaging using a multiply scattering medium,” Sci. Rep. 4, 5552 (2014).
[Crossref]

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging,” Sci. Rep. 6, 23731 (2016).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media with binary tunable metasurfaces,” Sci. Rep. 4, 6693 (2014).
[Crossref]

Science (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Other (31)

M. Johnson, “Opening satellite capacity to consumers with metamaterial antennas,” in International Conference on Metamaterials, Photonic Crystals and Plasmonics (2016).

D. P. Belcher and C. J. Baker, “Hybrid strip-map/spotlight SAR,” in IEE Colloquium on Radar and Microwave Imaging (IET, 1994), pp. 2/1–2/7.

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

J.-H. Kim, A. Ossowska, and W. Wiesbeck, “Investigation of MIMO SAR for interferometry,” in European Radar Conference (EuRAD) (IEEE, 2007), pp. 51–54.

R. C. Hansen, Phased Array Antennas (Wiley, 2009), Vol. 213.

M. Stangl, R. Werninghaus, and R. Zahn, “The TerraSAR-X active phased array antenna,” in IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2003), pp. 70–75.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).

M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999).

G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing (CRC Press, 1999).

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, “A high-resolution, four-band SAR testbed with real-time image formation,” in International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 1996), Vol. 3, pp. 1881–1885.

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” arXiv:1703.00072 (2017).

P. T. Bowen, M. Boyarsky, L. Pulido-Mancera, and D. R. Smith, Optimizing beam performance of metasurface antennas with Euclidean modulation (in preparation).

C. M. Watts, P. Lancaster, A. Pedross-Engel, J. R. Smith, and M. S. Reynolds, “2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4304–4310.

K. Cooper, C. Baldi, G. Chattopadhyay, M. Choukroun, C. Cochrane, R. Dengler, S. Durden, T. El Bouayadi, D. Gonzalez, R. Monje, A. Skalare, A. Tang, S. Tanelli, E. Gandini, and N. Llombart, “A combination millimeter-wave doppler radar and THz spectrometer for planetary science,” in 46th European Microwave Conference (EuMC) (IEEE, 2016), pp. 1537–1540.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook (1993), Vol. 4, p. 12.

A. Grbic and G. V. Eleftheriades, “A backward-wave antenna based on negative refractive index LC networks,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2002), Vol. 4, pp. 340–343.

D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook (2008), pp. 325–367.

G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A. Moreira, “Advanced concepts for high-resolution wide-swath SAR imaging,” in 8th European Conference on Synthetic Aperture Radar (EUSAR) (VDE, 2010), pp. 1–4.

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (2014).

M. Eineder, T. Fritz, J. Mittermayer, A. Roth, E. Boerner, and H. Breit, “TerraSAR-X ground segment, basic product specification document,” (2008).

B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB (CRC Press, 2002).

W. F. Moulder, J. J. Majewski, C. M. Coldwell, J. D. Krieger, and J. S. Herd, “Switched antenna array tile for real-time microwave imaging aperture,” in IEEE International Symposium on Antennas and Propagation (APSURSI) (IEEE, 2016), pp. 1067–1068.

R. E. Collin, Field Theory of Guided Waves (1960).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005), Vol. 1.

M. Nannetti, F. Caminita, and S. Maci, “Leaky-wave based interpretation of the radiation from holographic surfaces,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 5813–5816.

F. Ulaby and D. B. Lang, “A strategy for active remote sensing amid increased demand for spectrum,” in USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (IEEE, 2015), pp. 263.

J. Colbum, D. Sievenpiper, B. Fong, J. Ottusch, J. Visher, and P. Herz, “Advances in artificial impedance surface conformal antennas,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 3820–3823.

A. S. Paine, “An adaptive beamforming technique for countering synthetic aperture radar (SAR) jamming threats,” in IEEE Radar Conference (2007), pp. 630–634.

A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2004), Vol. 2, pp. 1000–1003.

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. (a) Sample 2D dynamic metasurface antenna. (b) 1D rectangular waveguide metasurface. The metamaterial elements are excited by a guided magnetic field, H , and the real part is plotted with the orange line. The dashed blue lines show the subwavelength intervals with which the metamaterial elements sample the guided wave.
Fig. 2.
Fig. 2. Schematic of the DMA used to simulate measurements in Sections 3 and 4. Each metamaterial resonator is modeled as an effective magnetic dipole, corresponding with the arrows shown above.
Fig. 3.
Fig. 3. Geometry used for individual metamaterial elements that comprise the simulated DMA. Circled numbers correspond to the ports used to calculate the scattering (S) parameters. S parameters ( S 21 is the solid lines and S 11 is the dashed lines) are shown as a function of frequency for different tuning states ( T n ), which correspond to different capacitance (C) values. Here, the metamaterial is slightly off-center to reduce the coupling with the guided wave to ensure ample signal reaches elements far from the feed.
Fig. 4.
Fig. 4. Directivity (plotted in dBi) of simulated broadside beams generated by the DMA described in Section 2.B at different frequencies.
Fig. 5.
Fig. 5. Directivity (plotted in dBi) of simulated steered beams, spanning ± 30 ° , generated by a DMA described in Section 2.B, shown for different frequencies.
Fig. 6.
Fig. 6. Visual description of two described modulation techniques for integrating DMAs with chirped pulses. Each color corresponds to a different tuning state.
Fig. 7.
Fig. 7. Schematic view of stripmap mode SAR conducted with a DMA. The area labeled “ROI” represents the region-of-interest of the imaging domain.
Fig. 8.
Fig. 8. Schematic view of spotlight mode SAR conducted with a DMA. The area labeled “ROI” represents the region-of-interest of the imaging domain.
Fig. 9.
Fig. 9. PSF for simulated stripmap SAR imaging, where | σ est | is the reconstructed scene reflectivity. (a)–(c) correspond with an analytic beam with beamwidth equal to the minimum, mean, and maximum beamwidths, respectively, among the beams generated with the DMA. (d) shows the image from the DMA. (e) shows the cross range cross sections for the four cases.
Fig. 10.
Fig. 10. PSF for simulated spotlight SAR imaging. (a) and (b) correspond with an analytic beam and DMA beams, respectively. (c) shows the image cross sections for the two cases.
Fig. 11.
Fig. 11. Imaging of a line of twelve point scatterers, spaced at 1.1 m. (a) and (b) show the simulated image for stripmap and spotlight, respectively. Note that to fit a large ROI into this figure, it is not plotted to scale.
Fig. 12.
Fig. 12. Schematic view of enhanced resolution stripmap SAR conducted with a DMA. Here, each steered beam, corresponding to a different color, is transmitted sequentially from each synthetic aperture location. The area labeled “ROI” represents the region-of-interest of the imaging domain.
Fig. 13.
Fig. 13. Imaging results with enhanced resolution stripmap conducted with the simulated DMA. (a) PSF, (b) the cross sections of the PSF image, where | σ est | is the estimated scene reflectivity, and (c) a line of twelve point scatterers, spaced at 1.1 m (the same targets in Fig. 11).
Fig. 14.
Fig. 14. Schematic view of diverse pattern stripmap SAR conducted with a dynamic metasurface antenna. The area labeled “ROI” represents the region-of-interest of the imaging domain.
Fig. 15.
Fig. 15. Three sample diverse radiation patterns generated by the simulated DMA at 9.7 GHz. The dashed line shows the simulated broadside beam for comparison.
Fig. 16.
Fig. 16. Imaging results with diverse pattern stripmap conducted with the simulated DMA. (a) shows the PSF, (b) shows the cross sections of the PSF image, where | σ est | is the estimated scene reflectivity, and (c) shows a line of twelve point scatterers, spaced at 1.1 m (the same targets as were used in Fig. 11).
Fig. 17.
Fig. 17. Simulated imaging of a line of twelve scatterers conducted with different imaging modalities: (a) stripmap, (b) spotlight, (c) enhanced resolution stripmap, and (d) diverse pattern stripmap. The corresponding SNR values indicate how robust each modality is to noise.

Tables (1)

Tables Icon

Table 1. Summary of Benefits and Drawbacks of Existing SAR Hardware, Phased Arrays, and Reflector Dishes, as Compared to Metasurface Antennas [21,34]a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α ( f , T ) = j a b β ( 1 + S 11 ( f , T ) S 21 ( f , T ) ) ,
η m ( f , r ¯ m ) = H ( f , r ¯ m ) α ( f , T ( f , r ¯ m ) ) ,
E T ( f , r ¯ l , r ¯ ) = A 0 m [ H 0 e j β r ¯ m n < m S 21 , m ] α m e j k | r ¯ r ¯ m r ¯ l | | r ¯ r ¯ m r ¯ l | .
S ( f , r ¯ l ) = V E T ( f , r ¯ l , r ¯ ) σ ( r ¯ ) E R ( f , r ¯ l , r ¯ ) d r ¯ ,
η isotropic = H 0 α max = H 0 a b β .
Stripmap Cross Range Re solution = λ min 4 sin ϕ 2 ,
Spotlight Cross Range Re solution = d λ min 2 L cos    θ 0 ,
Range Resolution = c 2 B .
SNR = 10 log 10 P S P N = 10 log 10 | S μ ( f , r ¯ l ) | 2 P N ,

Metrics