Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Study of a weak scattering model in aero-optic simulations and its computation

Not Accessible

Your library or personal account may give you access

Abstract

Atmosphere optic statistical modeling cannot be used to analyze aerodynamic flow laser beam propagation characteristics without accounting for the density spectrum of the refractive index. However, numerical simulations support the analysis of these characteristics through ray tracing, random-phase-screen diffraction modeling, and Maxwell-equation-based scattering modeling. We analyzed the laser-beam propagation in aero-optics using the Maxwell-equation-based scattering model. Three approaches offer solutions to Maxwell’s equations in statistically inhomogeneous media: high-order numerical differentiations with paraxial approximation and Runge–Kutta methods, Born-approximated scattering potential integral equations, and Rytov-approximated scattering potential integral equations. We performed high-accuracy calculations of the numerical integral equation using GCV-FFT. Finally, we analyzed the laser-beam propagations using these methods for a 2.9 Ma turbulence boundary layer (TBL) flow, the refractive index of which was obtained by direct numerical simulation (DNS) of the N-S equation.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Experimental investigation on aero-optics of supersonic turbulent boundary layers

Haolin Ding, Shihe Yi, Yangzhu Zhu, and Lin He
Appl. Opt. 56(27) 7604-7610 (2017)

Extended Taylor frozen-flow hypothesis and statistics of optical phase in aero-optics

Sudhakar Prasad
J. Opt. Soc. Am. A 34(6) 931-942 (2017)

Spatial–temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations

Curtis R. Vogel, Glenn A. Tyler, and Donald J. Wittich
J. Opt. Soc. Am. A 31(7) 1666-1679 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.