Abstract

This paper addresses the problem of multi-object tracking in complex scenes by a single, static, uncalibrated camera. Tracking-by-detection is a widely used approach for multi-object tracking. Challenges still remain in complex scenes, however, when this approach has to deal with occlusions, unreliable detections (e.g., inaccurate position/size, false positives, or false negatives), and sudden object motion/appearance changes, among other issues. To handle these problems, this paper presents a novel online multi-object tracking method, which can be fully applied to real-time applications. First, an object tracking process based on frame-by-frame association with a novel affinity model and an appearance update that does not rely on online learning is proposed to effectively and rapidly assign detections to tracks. Second, a two-stage drift handling method with novel track confidence is proposed to correct drifting tracks caused by the abrupt motion change of objects under occlusion and prolonged inaccurate detections. In addition, a fragmentation handling method based on a track-to-track association is proposed to solve the problem in which an object trajectory is broken into several tracks due to long-term occlusions. Based on experimental results derived from challenging public data sets, the proposed method delivers an impressive performance compared with other state-of-the-art methods. Furthermore, additional performance analysis demonstrates the effect and usefulness of each component of the proposed method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Oversaturated part-based visual tracking via spatio-temporal context learning

Wei Liu, Jicheng Li, Zhiguang Shi, Xiaotian Chen, and Xiao Chen
Appl. Opt. 55(25) 6960-6968 (2016)

Automated 3D trajectory measuring of large numbers of moving particles

Hai Shan Wu, Qi Zhao, Danping Zou, and Yan Qiu Chen
Opt. Express 19(8) 7646-7663 (2011)

Robust object tracking based on local discriminative sparse representation

Xin Wang, Siqiu Shen, Chen Ning, Yuzhen Zhang, and Guofang Lv
J. Opt. Soc. Am. A 34(4) 533-544 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription