Abstract

The traditional Monte Carlo technique of photon transport in random media describes only single point properties of light, such as its intensity. Here we demonstrate an approach that extends these capabilities to simulations involving properties of spatial coherence, a two-point characteristic of light. Numerical experiments illustrate the use of this Monte Carlo technique for describing the propagation of partially spatially coherent light through random multiply scattering media.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo modeling of optical coherence tomography imaging through turbid media

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo
Appl. Opt. 43(8) 1628-1637 (2004)

Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems

Andreas Tycho, Thomas M. Jørgensen, Harold T. Yura, and Peter E. Andersen
Appl. Opt. 41(31) 6676-6691 (2002)

Particle-fixed Monte Carlo model for optical coherence tomography

Guanglei Xiong, Ping Xue, Jigang Wu, Qin Miao, Rui Wang, and Liang Ji
Opt. Express 13(6) 2182-2195 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  2. S. Gigan, “Viewpoint: endoscopy slims down,” Physics 5, 127 (2012).
    [Crossref]
  3. M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
    [Crossref]
  4. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
    [Crossref]
  5. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2011).
  6. F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2010).
  7. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1.
  8. M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39, 1026–1031 (2000).
    [Crossref]
  9. R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
    [Crossref]
  10. B. Saleh, Introduction to Subsurface Imaging (Cambridge University, 2011).
  11. S. Sukhov, D. Haefner, and A. Dogariu, “Coupled dipole method for modeling optical properties of large-scale random media,” Phys. Rev. E 77, 066709 (2008).
    [Crossref]
  12. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [Crossref]
  13. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
    [Crossref]
  14. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004).
    [Crossref]
  15. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005).
    [Crossref]
  16. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005).
    [Crossref]
  17. J. W. Goodman, Statistical Optics (Wiley, 2015).
  18. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
    [Crossref]
  19. Q. Lu, X. Gan, M. Gu, and Q. Luo, “Monte Carlo modeling of optical coherence tomography imaging through turbid media,” Appl. Opt. 43, 1628–1637 (2004).
    [Crossref]
  20. V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
    [Crossref]
  21. A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
    [Crossref]
  22. V. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction, IEE Electromagnetic Wave Series 37 (IET, 1994).
  23. D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space diffraction,” J. Opt. Soc. Am. A 25, 2571–2581 (2008).
    [Crossref]
  24. S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).
    [Crossref]
  25. C. Mujat and A. Dogariu, “Statistics of partially coherent beams: a numerical analysis,” J. Opt. Soc. Am. A 21, 1000–1003 (2004).
    [Crossref]
  26. A. Tycho and T. M. Jørgensen, “Comment on “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects”,” Appl. Opt. 41, 4709–4711 (2002).
    [Crossref]
  27. S. Moon, D. Kim, and E. Sim, “Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach,” Appl. Opt. 47, 336–345 (2008).
    [Crossref]
  28. M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
    [Crossref]
  29. M. J. Kraszewski and J. Pluciński, “Coherent Wave Monte Carlo method for simulating light propagation in tissue,” Proc. SPIE 9706, 970611 (2016).
    [Crossref]
  30. S. John, G. Pang, and Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996).
    [Crossref]
  31. R. Pierrat, J.-J. Greffet, R. Carminati, and R. Elaloufi, “Spatial coherence in strongly scattering media,” J. Opt. Soc. Am. A 22, 2329–2337 (2005).
    [Crossref]
  32. C.-C. Cheng and M. G. Raymer, “Propagation of transverse optical coherence in random multiple-scattering media,” Phys. Rev. A 62, 023811 (2000).
    [Crossref]
  33. E. Baleine and A. Dogariu, “Propagation of partially coherent beams through particulate media,” J. Opt. Soc. Am. A 20, 2041–2045 (2003).
    [Crossref]
  34. J. Schäfer, “MatScat,” http://www.mathworks.com/matlabcentral/fileexchange/36831-matscat .
  35. J.-P. Schäfer, “Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe,” Ph.D. thesis (Univerität Ulm, 2011), http://vts.uni-ulm.de/doc.asp?id=7663 .
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
  37. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996).
    [Crossref]
  38. P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, “Lookup table–based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media,” Biomed. Opt. Express 8, 1895–1910 (2017).
    [Crossref]
  39. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

2017 (1)

2016 (1)

M. J. Kraszewski and J. Pluciński, “Coherent Wave Monte Carlo method for simulating light propagation in tissue,” Proc. SPIE 9706, 970611 (2016).
[Crossref]

2015 (2)

M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
[Crossref]

R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
[Crossref]

2012 (1)

S. Gigan, “Viewpoint: endoscopy slims down,” Physics 5, 127 (2012).
[Crossref]

2011 (2)

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

2010 (2)

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).
[Crossref]

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref]

2008 (3)

2005 (3)

2004 (3)

2003 (1)

2002 (1)

2000 (4)

1999 (1)

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref]

1996 (2)

D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996).
[Crossref]

S. John, G. Pang, and Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref]

Akkermans, E.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2011).

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Baleine, E.

Bartel, S.

Birowosuto, M. D.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

Borovikov, V. A.

V. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction, IEE Electromagnetic Wave Series 37 (IET, 1994).

Bürmen, M.

Carminati, R.

Cassemiro, K. N.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

Cheng, C.-C.

C.-C. Cheng and M. G. Raymer, “Propagation of transverse optical coherence in random multiple-scattering media,” Phys. Rev. A 62, 023811 (2000).
[Crossref]

Daria, V. R.

Dogariu, A.

R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
[Crossref]

S. Sukhov, D. Haefner, and A. Dogariu, “Coupled dipole method for modeling optical properties of large-scale random media,” Phys. Rev. E 77, 066709 (2008).
[Crossref]

C. Mujat and A. Dogariu, “Statistics of partially coherent beams: a numerical analysis,” J. Opt. Soc. Am. A 21, 1000–1003 (2004).
[Crossref]

E. Baleine and A. Dogariu, “Propagation of partially coherent beams through particulate media,” J. Opt. Soc. Am. A 20, 2041–2045 (2003).
[Crossref]

Duncan, D. D.

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).
[Crossref]

D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space diffraction,” J. Opt. Soc. Am. A 25, 2571–2581 (2008).
[Crossref]

Elaloufi, R.

Feidenhans’l, R.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Ferrero, C.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Fischer, D. G.

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).
[Crossref]

D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space diffraction,” J. Opt. Soc. Am. A 25, 2571–2581 (2008).
[Crossref]

Gábris, A.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

Gan, X.

Gigan, S.

S. Gigan, “Viewpoint: endoscopy slims down,” Physics 5, 127 (2012).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

J. W. Goodman, Statistical Optics (Wiley, 2015).

Greffet, J.-J.

Gu, M.

Haefner, D.

S. Sukhov, D. Haefner, and A. Dogariu, “Coupled dipole method for modeling optical properties of large-scale random media,” Phys. Rev. E 77, 066709 (2008).
[Crossref]

Hielscher, A. H.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1.

Jacques, S. L.

Jex, I.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

John, S.

S. John, G. Pang, and Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996).
[Crossref]

Jørgensen, T. M.

Kawata, S.

Kim, D.

Kinber, B. E.

V. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction, IEE Electromagnetic Wave Series 37 (IET, 1994).

Knudsen, E.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Kraszewski, M.

M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
[Crossref]

Kraszewski, M. J.

M. J. Kraszewski and J. Pluciński, “Coherent Wave Monte Carlo method for simulating light propagation in tissue,” Proc. SPIE 9706, 970611 (2016).
[Crossref]

Lefmann, K.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Likar, B.

Lu, Q.

Luo, Q.

Martelli, F.

F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2010).

Mishchenko, M. I.

Montambaux, G.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2011).

Moon, S.

Mosk, A. P.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref]

Mujat, C.

Naglic, P.

Pang, G.

S. John, G. Pang, and Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996).
[Crossref]

Pernuš, F.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Pierrat, R.

Plucinski, J.

M. J. Kraszewski and J. Pluciński, “Coherent Wave Monte Carlo method for simulating light propagation in tissue,” Proc. SPIE 9706, 970611 (2016).
[Crossref]

M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
[Crossref]

Potocek, V.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

Prahl, S. A.

Prodi, A.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Ramella-Roman, J. C.

Raymer, M. G.

C.-C. Cheng and M. G. Raymer, “Propagation of transverse optical coherence in random multiple-scattering media,” Phys. Rev. A 62, 023811 (2000).
[Crossref]

Rezvani Naraghi, R.

R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
[Crossref]

Sáenz, J. J.

R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
[Crossref]

Saleh, B.

B. Saleh, Introduction to Subsurface Imaging (Cambridge University, 2011).

Saloma, C.

Schäfer, J.-P.

J.-P. Schäfer, “Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe,” Ph.D. thesis (Univerität Ulm, 2011), http://vts.uni-ulm.de/doc.asp?id=7663 .

Schmitt, S.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Schreiber, A.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

Silberhorn, C.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

Sim, E.

Skipetrov, S. E.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref]

Strakowski, M. R.

M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
[Crossref]

Sukhov, S.

R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
[Crossref]

S. Sukhov, D. Haefner, and A. Dogariu, “Coupled dipole method for modeling optical properties of large-scale random media,” Phys. Rev. E 77, 066709 (2008).
[Crossref]

Toublanc, D.

Trojanowski, M.

M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
[Crossref]

Tycho, A.

Vos, W. L.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref]

Wang, L. V.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref]

Willendrup, P.

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

Xu, M.

Yang, Y.

S. John, G. Pang, and Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996).
[Crossref]

Yao, G.

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref]

Appl. Opt. (7)

Biomed. Opt. Express (1)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref]

J. Biomed. Opt. (1)

S. John, G. Pang, and Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996).
[Crossref]

J. Opt. Soc. Am. A (4)

Opt. Express (3)

Phys. Med. Biol. (1)

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref]

Phys. Rev. A (1)

C.-C. Cheng and M. G. Raymer, “Propagation of transverse optical coherence in random multiple-scattering media,” Phys. Rev. A 62, 023811 (2000).
[Crossref]

Phys. Rev. E (1)

S. Sukhov, D. Haefner, and A. Dogariu, “Coupled dipole method for modeling optical properties of large-scale random media,” Phys. Rev. E 77, 066709 (2008).
[Crossref]

Phys. Rev. Lett. (3)

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115, 203903 (2015).
[Crossref]

Physics (1)

S. Gigan, “Viewpoint: endoscopy slims down,” Physics 5, 127 (2012).
[Crossref]

Proc. SPIE (4)

A. Prodi, E. Knudsen, P. Willendrup, S. Schmitt, C. Ferrero, R. Feidenhans’l, and K. Lefmann, “A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams,” Proc. SPIE 8141, 814108 (2011).
[Crossref]

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).
[Crossref]

M. Kraszewski, M. Trojanowski, M. R. Strąkowski, and J. Pluciński, “Simulating the coherent light propagation in a random scattering materials using the perturbation expansion,” Proc. SPIE 9526, 95260M (2015).
[Crossref]

M. J. Kraszewski and J. Pluciński, “Coherent Wave Monte Carlo method for simulating light propagation in tissue,” Proc. SPIE 9706, 970611 (2016).
[Crossref]

Other (11)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

V. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction, IEE Electromagnetic Wave Series 37 (IET, 1994).

J. W. Goodman, Statistical Optics (Wiley, 2015).

J. Schäfer, “MatScat,” http://www.mathworks.com/matlabcentral/fileexchange/36831-matscat .

J.-P. Schäfer, “Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe,” Ph.D. thesis (Univerität Ulm, 2011), http://vts.uni-ulm.de/doc.asp?id=7663 .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

B. Saleh, Introduction to Subsurface Imaging (Cambridge University, 2011).

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2011).

F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2010).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometry of the problem. A beam with a Gaussian intensity profile propagates through a random medium. Randomization of photons’ directions due to scattering leads to the deterioration of spatial coherence. The distribution of the scattered photons over locations r and directions u along the output surface created by a small source at input surface forms the impulse response of the slab.

Fig. 2.
Fig. 2.

Comparison between Mie (blue solid line) and Henyey–Greenstein (red dashed line) scattering phase functions. Even though the asymmetry parameter in both cases is the same, g = 0.955 , the fine details of intensity angular distribution are very different. The gray area shows the histogram of scattering angles generated from the lookup table.

Fig. 3.
Fig. 3.

Normalized SCF at the output of scattering media containing nearly forward scattering particles for different optical densities (OD). (a) Calculations performed based on the near-forward scattering approximation using Eq. (4); (b) results obtained from Monte Carlo procedure when using Henyey–Greenstein scattering phase function; (c) results based on Monte Carlo procedure when using Mie scattering phase function.

Fig. 4.
Fig. 4.

Normalized SCF for the reflected light. The parameters of the scattering medium are the same as in Fig. 3.

Tables (1)

Tables Icon

Table 1. Full Width at Half-Maximum (FWHM) of the Spatial Coherence Function Estimated from Different Approaches

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ ( r 1 , r 2 ) = E ( r 1 ) E * ( r 2 ) ,
I I ( r , u ) = ( k 2 π ) 2 | u z | Γ ( r , ρ ) exp ( i k ρ u ) d 2 ρ .
Γ S ( r , ρ ) = I S ( r , u ) exp ( i k ρ u ) | u z | d 2 u .
I S ( r , u ) = I I ( r ) I i r ( r r , u ) d r .
Γ s ( r , ρ , z ) d q exp ( i q r ) exp [ I 1 ( ρ , q , z ) ] I 0 ( ρ , q , z ) ,
I 1 ( ρ , q , z ) = μ T z N σ N π θ 0 q { erf ( k θ 0 2 ρ ) erf [ k θ 0 2 ( ρ z q k ) ] } , I 0 ( ρ , q , z ) = 1 2 π exp [ ( ρ q z k ) 2 4 a 2 a 2 q 2 4 ] .
Δ θ out = N s θ 0 .

Metrics