Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Decomposition of the total wave aberration in generalized optical systems

Not Accessible

Your library or personal account may give you access

Abstract

The increasing use of freeform optical surfaces raises the demand for optical design tools developed for generalized systems. In the design process, surface-by-surface aberration contributions are of special interest. The expansion of the wave aberration function into field- and pupil-dependent coefficients is an analytical method used for that purpose. An alternative numerical approach utilizing data from the trace of multiple ray sets is proposed. The optical system is divided into segments of the optical path measured along the chief ray. Each segment covers one surface and the distance to the subsequent surface. Surface contributions represent the change of the wavefront that occurs due to propagation through individual segments. Further, the surface contributions are divided with respect to their phenomenological origin into intrinsic induced and transfer components. Each component is determined from a separate set of rays. The proposed method does not place any constraints on the system geometry or the aperture shape. However, here we concentrate on near-circular apertures and specify the resulting wavefront error maps using an expansion into Zernike polynomials.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Theory of aberration fields for general optical systems with freeform surfaces

Kyle Fuerschbach, Jannick P. Rolland, and Kevin P. Thompson
Opt. Express 22(22) 26585-26606 (2014)

Nodal aberration properties of coaxial imaging systems using Zernike polynomial surfaces

Tong Yang, Jun Zhu, and Guofan Jin
J. Opt. Soc. Am. A 32(5) 822-836 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.