Abstract

A single-order transmission diffraction grating based on dispersion engineered all-dielectric metasurfaces is proposed, and its wavelength discriminating properties have been theoretically described and confirmed using numerical simulations. The metasurface is designed using a 2D array of all-dielectric resonators, which emulates a Huygens’ source configuration to achieve a perfect match to free space in broad bandwidth. Using a holey dielectric nanodisk structure as the unit cell, the resonant wavelength is tapered across the metasurface to engineer the wavelength-dependent spatial phase gradient, to emulate a dispersive prism. Consequently, different wavelengths are steered toward different directions and thus are discriminated on the output image plane. Due to the subwavelength periodicities involved, wavelength discrimination is achieved directly in the zeroth diffraction order of the device, unlike conventional diffraction gratings, thereby providing a high-efficiency wavelength discriminating device.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces

Ehsan Arbabi, Amir Arbabi, Seyedeh Mahsa Kamali, Yu Horie, and Andrei Faraon
Optica 4(6) 625-632 (2017)

Dynamic transmission control based on all-dielectric Huygens metasurfaces

Austin Howes, Wenyi Wang, Ivan Kravchenko, and Jason Valentine
Optica 5(7) 787-792 (2018)

Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene

Christos Argyropoulos
Opt. Express 23(18) 23787-23797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
    [Crossref]
  2. P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
    [Crossref]
  3. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band,” Opt. Express 12, 2895–2902 (2004).
    [Crossref]
  4. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  5. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
  6. E. G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
    [Crossref]
  7. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21, 366–368 (1996).
    [Crossref]
  8. A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42, 4152–4155 (2003).
    [Crossref]
  9. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  10. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  11. C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  12. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  13. N. Yu and F. Capasso, “Optical metasurfaces and prospect of their applications including fiber optics,” J. Lightwave Technol. 33, 2344–2358 (2015).
    [Crossref]
  14. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Achromatic metasurface optical components by dispersive phase compensation,” arXiv:1411.3966 (2014).
  15. Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
    [Crossref]
  16. J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.
  17. L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2, 255–258 (2015).
    [Crossref]
  18. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
    [Crossref]
  19. K. Achouri, M. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans. Antennas Propag. 63, 2977–2991 (2015).
    [Crossref]
  20. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [Crossref]
  21. J. Poon and B. Francis, “Kramers-Kronig relations for lossless media,” Internal Report (University of Toronto, 2009).
  22. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  23. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  24. A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
    [Crossref]
  25. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
    [Crossref]
  26. G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.
  27. Editorial, “Where now for plasmonics?” Nat. Nanotechnol.11, 1 (2016).
    [Crossref]
  28. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
    [Crossref]

2016 (2)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

2015 (6)

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

N. Yu and F. Capasso, “Optical metasurfaces and prospect of their applications including fiber optics,” J. Lightwave Technol. 33, 2344–2358 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2, 255–258 (2015).
[Crossref]

K. Achouri, M. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans. Antennas Propag. 63, 2977–2991 (2015).
[Crossref]

2014 (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
[Crossref]

2013 (3)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

2012 (2)

S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
[Crossref]

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

2004 (1)

2003 (1)

1996 (1)

1977 (1)

Achouri, K.

K. Achouri, M. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans. Antennas Propag. 63, 2977–2991 (2015).
[Crossref]

Adam, J.

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Achromatic metasurface optical components by dispersive phase compensation,” arXiv:1411.3966 (2014).

Arju, N.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Aydin, K.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Booth, J.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
[Crossref]

Butun, S.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Caloz, C.

K. Achouri, M. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans. Antennas Propag. 63, 2977–2991 (2015).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Optical metasurfaces and prospect of their applications including fiber optics,” J. Lightwave Technol. 33, 2344–2358 (2015).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Achromatic metasurface optical components by dispersive phase compensation,” arXiv:1411.3966 (2014).

Chang-Hasnain, C. J.

Chen, J.

J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

Colburn, S.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Dodson, C. M.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Eyck, G. T.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Ferrara, J.

Francis, B.

J. Poon and B. Francis, “Kramers-Kronig relations for lossless media,” Internal Report (University of Toronto, 2009).

Fryett, T. K.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Achromatic metasurface optical components by dispersive phase compensation,” arXiv:1411.3966 (2014).

Gerken, M.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

Gordon, J.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Gou, F.

J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Holloway, C.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jalali, B.

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

Kapraun, J.

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Achromatic metasurface optical components by dispersive phase compensation,” arXiv:1411.3966 (2014).

Kelp, G.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Kivshar, Y. S.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
[Crossref]

Kuester, E. F.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kuznetsov, A. I.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Larouche, S.

Li, Z.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Lin, C.

Loewen, E. G.

Luk’yanchuk, B.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Majumdar, A.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Maystre, D.

Metz, P.

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Neuner, B.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Nevière, M.

O’Hara, J.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Poon, J.

J. Poon and B. Francis, “Kramers-Kronig relations for lossless media,” Internal Report (University of Toronto, 2009).

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Salem, M.

K. Achouri, M. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans. Antennas Propag. 63, 2977–2991 (2015).
[Crossref]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Shirasaki, M.

Shvets, G.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Sinclair, M. B.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Smith, D.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Smith, D. R.

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Trivedi, R.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
[Crossref]

Vega, A.

Weiner, A. M.

Wu, C.

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Wu, Y.

J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.

Xiao, S.

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
[Crossref]

Yu, N.

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Zhan, A.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Zhang, M.

J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.

Zhang, Z.

J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.

Zhu, L.

ACS Photon. (1)

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Adv. Opt. Mater. (1)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Appl. Opt. (3)

IEEE Antennas Propag. Mag. (1)

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Booth, and D. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

K. Achouri, M. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans. Antennas Propag. 63, 2977–2991 (2015).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (2)

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15, 1615–1621 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Nat. Commun. (1)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 1–7 (2014).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Nat. Photonics (2)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Other (7)

J. Chen, F. Gou, Y. Wu, M. Zhang, and Z. Zhang, “Beam steering with nanoring reflectarray metasurfaces,” in 14th IEEE International Conference on Nanotechnology (2014), pp. 333–336.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Achromatic metasurface optical components by dispersive phase compensation,” arXiv:1411.3966 (2014).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

J. Poon and B. Francis, “Kramers-Kronig relations for lossless media,” Internal Report (University of Toronto, 2009).

G. Shvets, C. Wu, N. Arju, G. Kelp, B. Neuner, G. T. Eyck, M. B. Sinclair, and I. Brener, “All-dielectric metamaterials: path to low losses and high spectral selectivity,” in Conference on Lasers and Electro-Optics (2013), paper QW1P-2.

Editorial, “Where now for plasmonics?” Nat. Nanotechnol.11, 1 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Fundamental wavelength discriminating functionality of (a) a conventional thin sinusoidal diffraction grating, and (b) the proposed metasurface grating.
Fig. 2.
Fig. 2. Principle of the proposed metasurface grating where the metasurface is dispersion engineered to refract different wavelengths toward different angles. The metasurface grating is assumed to be followed by a focal lens, which is not shown here for simplicity.
Fig. 3.
Fig. 3. Dispersion engineered all-dielectric metasurfaces. (a) Metasurface unit cell. (b) FEM-HFSS simulated dispersion response of four different unit cells using periodic boundary conditions, and the extracted λp versus λr relation using an analytical transfer function of Eq. (14). (c) Transmission and reflection responses of the four unit cells. Here n=3.5, n0=1.66, and t=220  nm, and ωp is the angular frequency corresponding to the plasma wavelength.
Fig. 4.
Fig. 4. Metasurface grating characteristics. (a) Metasurface transmission phase as a function of wavelength along the x axis of the metasurface. (b) Wavelength scanning law. Here λmax=1325  nm, λmin=1275  nm, and 0=100  μm.
Fig. 5.
Fig. 5. Analytical field distribution (|ψ(x,z;λ)|2), in the xz plane when a Gaussian beam of width w0 is incident on the dispersion engineered metasurface of Fig. 4, for various different wavelengths. The Gaussian beam assumed is ψ(x,y,0)=exp{(x2+y2)/2w02}. All fields are normalized to the input maximum.
Fig. 6.
Fig. 6. Qualitative description of a generalized refracting metasurface to determine the operating diffraction order.
Fig. 7.
Fig. 7. Comparative illustration of a conventional diffraction grating and a generalized refracting metasurface in terms of their diffraction orders.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

gt(x)=12[1+mcos(2πxΛ)],
|I(x,y;d)|[δ(x)2+m4{δ(x+λdΛ)+δ(xλdΛ)}].
kz=2π(1λ)2(qΛ)2.
T(x,y;λ)=exp{jφ(λ)x}=exp{j2πΦ0λx},
|ψ(x,y,d;λ)|=|ψ(x,y,0;λ)T(x,y;λ)Tlens(x,y)*hair(x,y)|,
|ψ(x,y,d;λ)|δ(xΦ0d).
φ(λ1,x)=0T(x,y;λ1)=1,
φ(λ2,x)=φ0xT(x,y;λ2)=exp{jφ0x},
φ0(λ2)=T(x,y;λ2)dx.
x=(φ0λ2d2π),
θ(λ)=(φ0λ2π).
Tm(λ)=[λ+i2πcη0α^e(λ)/2λi2πcη0α^e(λ)/2].
α^(λ)=λp2λr[λrλr2λ2jπ2{δ(λ+λr)+δ(λλr)}],
T(λ)=[λ(λr2λ2)+jπη0cλp2λ(λr2λ2)jπη0cλp2]=exp{jφ(λ)},
φ(λ)=2tan1[πη0cλp2λ(λr2λ2)].
λr(x,y)=λmin+(x+0/2)λmaxλmin0.
kz=2π(1λ)2(qΛm+φ02π)2,
θm=sin1(kxk0)=sin1[λ(qΛm+φ02π)].
(1λ+φ02π)Λm<q<(1λφ02π)Λm.
θm0=sin1(kxk0)=sin1(λφ02π).
kz=2π(1λ)2(p1Λd)2,
θd=sin1(kxk0)=pλΛd.
θm=sin1(mn)λΛd.

Metrics