Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Launching surface plasmon waves via vanishingly small periodic gratings

Abstract

The scattering of electromagnetic waves by periodic layered media plays a crucial role in many applications in optics and photonics, in particular in nanoplasmonics for topics as diverse as extraordinary optical transmission, photonic crystals, metamaterials, and surface plasmon resonance biosensing. With these applications in mind, we focus on surface plasmon resonances excited in the context of insulator–metal structures with a periodic, corrugated interface. The object of this contribution is to study the geometric limits required to generate these fundamentally important phenomena. For this we use the robust, rapid, and highly accurate field expansions method to investigate these delicate phenomena and demonstrate how very small perturbations (e.g., a 5 nm deviation on a 530 nm period grating) can generate strong (in this instance 20%) plasmonic absorption, and vanishingly small perturbations (e.g., a 1 nm deviation on a 530 nm period grating) can generate nontrivial (in this instance 1%) plasmonic absorption.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Launching graphene surface plasmon waves with vanishingly small periodic grating structures

David P. Nicholls and Sang-Hyun Oh
J. Opt. Soc. Am. A 38(4) 556-563 (2021)

Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials

David P. Nicholls, Fernando Reitich, Timothy W. Johnson, and Sang-Hyun Oh
J. Opt. Soc. Am. A 31(8) 1820-1831 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (82)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.