G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

S. S. Gorthi and P. Rastogi, “Improved high-order ambiguity-function method for the estimation of phase from interferometric fringes,” Opt. Lett. 34, 2575–2577 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

A. S. Kayhan, “Representation and analysis of complex chirp signals,” Signal Process. 66, 111–116 (1998).

[CrossRef]

G. K. Bhat, “A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps,” Opt. Commun. 111, 214–218 (1994).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

L. A. Liporace, “Linear estimation of nonstationary signals,” J. Acoust. Soc. Am. 58, 1288–1295 (1975).

[CrossRef]

G. K. Bhat, “A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps,” Opt. Commun. 111, 214–218 (1994).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Improved high-order ambiguity-function method for the estimation of phase from interferometric fringes,” Opt. Lett. 34, 2575–2577 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

A. S. Kayhan, “Representation and analysis of complex chirp signals,” Signal Process. 66, 111–116 (1998).

[CrossRef]

L. A. Liporace, “Linear estimation of nonstationary signals,” J. Acoust. Soc. Am. 58, 1288–1295 (1975).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Improved high-order ambiguity-function method for the estimation of phase from interferometric fringes,” Opt. Lett. 34, 2575–2577 (2009).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995).

[CrossRef]

K. A. Stetson, J. Wahid, and P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36, 4830–4838 (1997).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

L. A. Liporace, “Linear estimation of nonstationary signals,” J. Acoust. Soc. Am. 58, 1288–1295 (1975).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

G. K. Bhat, “A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps,” Opt. Commun. 111, 214–218 (1994).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

A. S. Kayhan, “Representation and analysis of complex chirp signals,” Signal Process. 66, 111–116 (1998).

[CrossRef]