G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Improved high-order ambiguity-function method for the estimation of phase from interferometric fringes,” Opt. Lett. 34, 2575–2577 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

A. S. Kayhan, “Representation and analysis of complex chirp signals,” Signal Process. 66, 111–116 (1998).

[CrossRef]

G. K. Bhat, “A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps,” Opt. Commun. 111, 214–218 (1994).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

L. A. Liporace, “Linear estimation of nonstationary signals,” J. Acoust. Soc. Am. 58, 1288–1295 (1975).

[CrossRef]

G. K. Bhat, “A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps,” Opt. Commun. 111, 214–218 (1994).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Improved high-order ambiguity-function method for the estimation of phase from interferometric fringes,” Opt. Lett. 34, 2575–2577 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

A. S. Kayhan, “Representation and analysis of complex chirp signals,” Signal Process. 66, 111–116 (1998).

[CrossRef]

L. A. Liporace, “Linear estimation of nonstationary signals,” J. Acoust. Soc. Am. 58, 1288–1295 (1975).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Adaptive window Wigner–Ville-distribution-based method to estimate phase derivative from optical fringes,” Opt. Lett. 34, 3151–3153 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Improved high-order ambiguity-function method for the estimation of phase from interferometric fringes,” Opt. Lett. 34, 2575–2577 (2009).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

K. A. Stetson, J. Wahid, and P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36, 4830–4838 (1997).

[CrossRef]

R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

L. A. Liporace, “Linear estimation of nonstationary signals,” J. Acoust. Soc. Am. 58, 1288–1295 (1975).

[CrossRef]

G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Polynomial Wigner–Ville distribution-based method for direct phase derivative estimation from optical fringes,” J. Opt. A 11, 125402 (2009).

[CrossRef]

S. S. Gorthi and P. Rastogi, “Piecewise polynomial phase approximation approach for the analysis of reconstructed interference fields in digital holographic interferometry,” J. Opt. A 11, 065405 (2009).

[CrossRef]

Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994).

[CrossRef]

G. K. Bhat, “A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps,” Opt. Commun. 111, 214–218 (1994).

[CrossRef]

F. Palacios, E. Gonçalves, J. Ricardo, and J. L. Valin, “Adaptive filter to improve the performance of phase-unwrapping in digital holography,” Opt. Commun. 238, 245–251 (2004).

[CrossRef]

G. Rajshekhar and P. Rastogi, “Fringe analysis: premise and perspectives,” Opt. Lasers Eng. 50, 3–10 (2012).

A. S. Kayhan, “Representation and analysis of complex chirp signals,” Signal Process. 66, 111–116 (1998).

[CrossRef]