Abstract

Today chromatic adaptation transforms (CATs) are reconsidered, since their mathematical inconsistency has been shown in Color Res. Appl. 38, 188 (2013) and by the CIE technical committee TC 8-11: CIECAM02 Mathematics. In 2004–2005 the author proposed an adaptation transform based on the uniform color scale system of the Optical Society of America (OSA-UCS) [J. Opt. Soc. Am. A 21, 677 (2004); Color Res. Appl. 30, 31 (2005)] that transforms the cone-activation stimuli into adapted stimuli. The present work considers all the 37 available corresponding color (CC) datasets selected by CIE and (1) shows that the adapted stimuli obtained from CC data are defined up to an unknown transformation, and an unambiguous definition of the adapted stimuli requires additional hypotheses or suitable experimental data (as it is in the OSA-UCS system); (2) produces a CAT, represented by a linear transformation between CCs, associated with any CC dataset, whose high quality measured in ΔE units discards the possibility of nonlinear transformations; (3) analyzes these color-conversion matrices in a heuristic way with a reference adaptation that is approximately that of the OSA-UCS adapted colors for the D65 illuminant and particularly shows accordance with the Hunt effect and the Bezold–Brücke hue shift; (4) proposes the measurements of CC stimuli with a reference adaptation equal to that of the visual situation of the OSA-UCS system for defining adapted colors for any considered illumination adaptation and therefore for defining a general CAT formula.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. CIE, “A review of chromatic adaptation transforms,” in CIE 160:2004 (CIE Central Bureau, 2004).
  2. M. R. Luo, “A review of chromatic adaptation transforms,” Rev. Prog. Color. 30, 77–91 (2000).
  3. L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.
  4. J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976).
    [CrossRef]
  5. E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4, 1115–1129 (1987).
    [CrossRef]
  6. H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).
  7. K. M. Lam, “Metamerism and colour constancy,” Ph.D. thesis (University of Bradford, 1985).
  8. K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media colour reproduction,” in Proceedings of the 4th IS&T/SID Color Imaging Conference (Curran Associates, Inc., 1996), pp. 214–220.
  9. W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995).
    [CrossRef]
  10. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
    [CrossRef]
  11. M. H. Brill, “Irregularity in CIECAM02 and its avoidance,” Color Res. Appl. 31, 142–145 (2006).
    [CrossRef]
  12. M. H. Brill and S. Süsstrunk, “Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 424–426 (2008).
    [CrossRef]
  13. M. H. Brill and S. Süsstrunk, “Erratum. Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 493 (2008).
    [CrossRef]
  14. M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38, 188–195 (2013).
    [CrossRef]
  15. C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014).
    [CrossRef]
  16. M. H. Brill and C. Oleari, “Chromatic adaptation by illuminant matrix products: an alternative to sharpened Von Kries primaries,” Color Res. Appl. 39, 275–278 (2014).
    [CrossRef]
  17. D. L. MacAdam, “Uniform color scales,” J. Opt. Soc. Am. 64, 1691–1702 (1974).
    [CrossRef]
  18. D. L. MacAdam, “Colorimetric data for samples of OSA uniform color scales,” J. Opt. Soc. Am. 68, 121–130 (1978).
    [CrossRef]
  19. C. Oleari, “Color opponencies in the system of the uniform color scales of the Optical Society of America,” J. Opt. Soc. Am. A 21, 677–682 (2004).
    [CrossRef]
  20. C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
    [CrossRef]
  21. C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA-UCS system,” J. Opt. Soc. Am. A 28, 2226–2234 (2011).
    [CrossRef]
  22. C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).
  23. R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005).
    [CrossRef]
  24. CIE, “A color appearance model for color management systems: CIECAM02,” in CIE 159:2004 (CIE Central Bureau, 2004).
  25. J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
    [CrossRef]
  26. A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
    [CrossRef]
  27. C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
    [CrossRef]
  28. C. Oleari, “Inter-observer comparison of color-matching functions,” Color Res. Appl. 24, 177–184 (1999).
    [CrossRef]
  29. C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134 (2009).
    [CrossRef]
  30. CIE, “Colorimetry,” in CIE 15:2004 (CIE Central Bureau, 2004).
  31. T. Kunkel and E. Reinhard, “A neurophysiology-inspired steady-state color appearance model,” J. Opt. Soc. Am. A 26, 776–782 (2009).
    [CrossRef]
  32. R. W. G. Hunt, “Light and dark adaptation and the perception of color,” J. Opt. Soc. Am. 42, 190–199 (1952).
    [CrossRef]
  33. G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1982), p. 422.

2014 (2)

C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014).
[CrossRef]

M. H. Brill and C. Oleari, “Chromatic adaptation by illuminant matrix products: an alternative to sharpened Von Kries primaries,” Color Res. Appl. 39, 275–278 (2014).
[CrossRef]

2013 (2)

C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38, 188–195 (2013).
[CrossRef]

2012 (1)

2011 (1)

2009 (2)

2008 (2)

M. H. Brill and S. Süsstrunk, “Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 424–426 (2008).
[CrossRef]

M. H. Brill and S. Süsstrunk, “Erratum. Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 493 (2008).
[CrossRef]

2006 (1)

M. H. Brill, “Irregularity in CIECAM02 and its avoidance,” Color Res. Appl. 31, 142–145 (2006).
[CrossRef]

2005 (2)

C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
[CrossRef]

R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005).
[CrossRef]

2004 (1)

2000 (1)

M. R. Luo, “A review of chromatic adaptation transforms,” Rev. Prog. Color. 30, 77–91 (2000).

1999 (2)

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
[CrossRef]

C. Oleari, “Inter-observer comparison of color-matching functions,” Color Res. Appl. 24, 177–184 (1999).
[CrossRef]

1995 (2)

W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
[CrossRef]

1991 (1)

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

1987 (1)

1978 (1)

1976 (1)

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976).
[CrossRef]

1974 (1)

1952 (2)

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).

R. W. G. Hunt, “Light and dark adaptation and the perception of color,” J. Opt. Soc. Am. 42, 190–199 (1952).
[CrossRef]

Bez, H.

W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995).
[CrossRef]

Braun, K. M.

K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media colour reproduction,” in Proceedings of the 4th IS&T/SID Color Imaging Conference (Curran Associates, Inc., 1996), pp. 214–220.

Breneman, E. J.

Brill, M. H.

M. H. Brill and C. Oleari, “Chromatic adaptation by illuminant matrix products: an alternative to sharpened Von Kries primaries,” Color Res. Appl. 39, 275–278 (2014).
[CrossRef]

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38, 188–195 (2013).
[CrossRef]

M. H. Brill and S. Süsstrunk, “Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 424–426 (2008).
[CrossRef]

M. H. Brill and S. Süsstrunk, “Erratum. Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 493 (2008).
[CrossRef]

M. H. Brill, “Irregularity in CIECAM02 and its avoidance,” Color Res. Appl. 31, 142–145 (2006).
[CrossRef]

Chaparro, A.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
[CrossRef]

Chen, G.

A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
[CrossRef]

Clarke, A. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Daugirdiene, A.

Fairchild, M. D.

K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media colour reproduction,” in Proceedings of the 4th IS&T/SID Color Imaging Conference (Curran Associates, Inc., 1996), pp. 214–220.

Fermi, F.

C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).

Gowdy, P. D.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
[CrossRef]

Helson, H.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).

Huertas, R.

Hunt, R. W. G.

R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005).
[CrossRef]

R. W. G. Hunt, “Light and dark adaptation and the perception of color,” J. Opt. Soc. Am. 42, 190–199 (1952).
[CrossRef]

Ikeda, K.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.

Judd, D. B.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).

Komatsubara, H.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.

Kronauer, R. E.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
[CrossRef]

Kulikowski, J. J.

Kunkel, T.

Kuo, W.

W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995).
[CrossRef]

Lam, K. M.

K. M. Lam, “Metamerism and colour constancy,” Ph.D. thesis (University of Bradford, 1985).

Li, C.

C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014).
[CrossRef]

R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005).
[CrossRef]

Luo, M. R.

C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014).
[CrossRef]

R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005).
[CrossRef]

M. R. Luo, “A review of chromatic adaptation transforms,” Rev. Prog. Color. 30, 77–91 (2000).

W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995).
[CrossRef]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

MacAdam, D. L.

Mahy, M.

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38, 188–195 (2013).
[CrossRef]

McCann, J. J.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976).
[CrossRef]

McKee, S. P.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976).
[CrossRef]

Melgosa, M.

Mori, L.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.

Murray, I. J.

Oleari, C.

M. H. Brill and C. Oleari, “Chromatic adaptation by illuminant matrix products: an alternative to sharpened Von Kries primaries,” Color Res. Appl. 39, 275–278 (2014).
[CrossRef]

C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).

C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA-UCS system,” J. Opt. Soc. Am. A 28, 2226–2234 (2011).
[CrossRef]

C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134 (2009).
[CrossRef]

C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
[CrossRef]

C. Oleari, “Color opponencies in the system of the uniform color scales of the Optical Society of America,” J. Opt. Soc. Am. A 21, 677–682 (2004).
[CrossRef]

C. Oleari, “Inter-observer comparison of color-matching functions,” Color Res. Appl. 24, 177–184 (1999).
[CrossRef]

Panorgias, A.

Reinhard, E.

Rhodes, P. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Schappo, A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Scrivener, S. A. R.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Sobagaki, H.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.

Stanikunas, R.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1982), p. 422.

Stromeyer, C. F.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
[CrossRef]

Süsstrunk, S.

M. H. Brill and S. Süsstrunk, “Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 424–426 (2008).
[CrossRef]

M. H. Brill and S. Süsstrunk, “Erratum. Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 493 (2008).
[CrossRef]

Tait, C. J.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Taylor, T. H.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976).
[CrossRef]

Ucakar, A.

C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).

Vaitkevicius, H.

Wang, Z.

C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014).
[CrossRef]

Warren, M. H.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1982), p. 422.

Color Res. Appl. (12)

W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995).
[CrossRef]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

M. H. Brill, “Irregularity in CIECAM02 and its avoidance,” Color Res. Appl. 31, 142–145 (2006).
[CrossRef]

M. H. Brill and S. Süsstrunk, “Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 424–426 (2008).
[CrossRef]

M. H. Brill and S. Süsstrunk, “Erratum. Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 493 (2008).
[CrossRef]

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38, 188–195 (2013).
[CrossRef]

C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014).
[CrossRef]

M. H. Brill and C. Oleari, “Chromatic adaptation by illuminant matrix products: an alternative to sharpened Von Kries primaries,” Color Res. Appl. 39, 275–278 (2014).
[CrossRef]

C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).

R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005).
[CrossRef]

C. Oleari, “Inter-observer comparison of color-matching functions,” Color Res. Appl. 24, 177–184 (1999).
[CrossRef]

C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (6)

lllum. Eng. (1)

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).

Rev. Prog. Color. (1)

M. R. Luo, “A review of chromatic adaptation transforms,” Rev. Prog. Color. 30, 77–91 (2000).

Vis. Res. (3)

A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995).
[CrossRef]

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999).
[CrossRef]

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976).
[CrossRef]

Other (7)

CIE, “Colorimetry,” in CIE 15:2004 (CIE Central Bureau, 2004).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1982), p. 422.

CIE, “A color appearance model for color management systems: CIECAM02,” in CIE 159:2004 (CIE Central Bureau, 2004).

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.

K. M. Lam, “Metamerism and colour constancy,” Ph.D. thesis (University of Bradford, 1985).

K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media colour reproduction,” in Proceedings of the 4th IS&T/SID Color Imaging Conference (Curran Associates, Inc., 1996), pp. 214–220.

CIE, “A review of chromatic adaptation transforms,” in CIE 160:2004 (CIE Central Bureau, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Chromaticity diagram of the adapted reference frame ABC with two spectrum loci related to CSAJ-C data [3], associated with the adaptations due to the illuminant D65 (OSA-UCS visual situation, black line) and the illuminant W1A (gray line), respectively. The black points represent the chromaticities of the stimuli adapted to the illuminant D65, and the gray point to the illuminant W1. The chromaticities of all the real stimuli are internal to the ABC triangle.

Fig. 2.
Fig. 2.

Chromaticity diagram of the adapted reference frame ABC with two spectrum loci related to the Lam and Rigg data [7], associated with the adaptations due to the illuminant D65 (OSA-UCS visual situation, black line) and the illuminant W1A (gray line), respectively. The black points represent the chromaticities of the stimuli adapted to the illuminant D65, and the gray point to the illuminant W1. The chromaticities of a part of the real stimuli in the short-wavelength region are external to the ABC triangle, producing an inconsistency in the subsequent log compression of negative numbers. This inconsistency is produced by the improper use of matrix HOSA,D65 as HW1.

Fig. 3.
Fig. 3.

Chromaticity diagram of the adapted reference frame ABC with two spectrum loci and CC pairs related to the Breneman L p5 dataset [5], where the two adaptation illuminants have the same D55 chromaticity and different illumination level. In this case in the adapted reference frame, the two spectrum loci related to the two different adaptations are one internal to the other, and the size of the chromatic palette increases with increasing illumination level, according to the Hunt effect [32].

Fig. 4.
Fig. 4.

Spectrum loci and CC pairs of Fig. 3, related to the Breneman L p5 CC dataset [5], drawn on the opponent coordinates (G,J) of the OSA-UCS system. In this diagram the colors on straight lines radiating from the central achromatic point have equal hue, and this allows the computation of the wavelength difference between points on the two spectrum loci with equal hue. This wavelength difference, plotted in Fig. 5, has a shape recalling that of the Bezold–Brücke hue shift [33].

Fig. 5.
Fig. 5.

Wavelength difference between points on two spectrum loci (Figs. 3 and 4) with equal hue related to two adaptations due to illuminants with equal chromaticity (D55) and with different luminances (2120 and 130cd/m2). This wavelength difference has a shape that is in agreement with that of the Bezold–Brücke hue shift [33].

Tables (1)

Tables Icon

Table 1. Corresponding Color Datasets Selected by the Technical Committee CIE 1-52 [1]a

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

(RGB)W2=[KR000KG000KB]W1W2(RGB)W1=KW1W2(RGB)W1,
KR=(RW2RW1),KG=(GW2GW1),KS=(BW2BW1).
(XYZ)W2=A1KW1W2A(XYZ)W1,
(XcYcZc)reference=(XYZ)W2=CW1W2(XYZ)W1=Ctestreference(XYZ)test,
(ABC)=T(LMS).
ln(AB),ln(BC),ln(CA);
(ABC)=TO,W(LMS)O,WHO,WPO(LMS)O,WHO,W(XYZ)O,W,
(X10Y10Z10)=P(LMS)=[2.04501.25640.21150.74030.26630.00660.00000.00211.0021](LMS),(LMS)=P1(X10Y10Z10)=[0.18060.85190.03250.50211.38710.11510.00110.00210.9981](X10Y10Z10)
TOSA,D65=HOSA,D65P=(1.75570.74030.02860.26730.69060.01990.26700.16640.5255),TOSA,D651=P1HOSA,D651=(0.49440.54140.04750.18581.25790.03760.19230.67341.9390)
HOSA,D65=(0.68880.46890.11370.29851.18570.09070.03590.45980.5350),HOSA,D651=(1.20370.61570.36010.31780.74020.05790.19240.67741.9431)
TO,W1(A=1B=1C=1)=(LnMnSn)O,WHO,W1(A=1B=1C=1)=(XnYnZn)O,W,
(ABC)=TW1(LMS)W1=TW2(LMS)W2,
(ABC)=HW2(XYZ)W2=HW2P(LMS)W2=HW1(XYZ)W1=HW1P(LMS)W1,
(LMS)W2=TW21TW1(LMS)W1,(XYZ)W2=CW1W2(XYZ)W1=HW21HW1(XYZ)W1.
(XYZ)W2=(HW21U1)(UHW1)(XYZ)W1.
matrixAmatrixP1,(R,G,B)(L,M,S),A1KW1W2A[Eq.(3)]CW1W2=HW21HW1[Eq.(14)],
(ABC)=HW1(X10Y10Z10)W1=HW2(X10Y10Z10)W2.
HW1=HW2CW1W2=HW2(HW2)1HW1HD65,OSACW1W2;
(X10Y10Z10)=[0.90437810.10983370.00163460.02052681.0031350.04357140.04010730.04841511.010795](XYZ),
σX2i=1N[XW2,i(C1,1XW1,i+C1,2YW1,i+C1,3ZW1,i)]2,
{C1,1i=1NXW,1i2+C1,2i=1NYW,1iXW,1i+C1,3i=1NZW,1iXW,1i=i=1NXW,2iXW,1iC1,1i=1NXW,1iYW,1i+C1,2i=1NYW,1i2+C1,3i=1NZW,1iYW,1i=i=1NXW,2iYW,1iC1,1i=1NXW,1iZW,1i+C1,2i=1NYW,1iZW,1i+C1,3i=1NZW,1i2=i=1NXW,2iZW,1i.
(X10,iY10,iZ10,i)=(HOSA,D65)1HCIE31,D65(XiYiZi),
σX2i=1N[X10,i(M1,1Xi+M1,2Yi+M1,3Zi)]2,

Metrics