Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Compressed sampling strategies for tomography

Not Accessible

Your library or personal account may give you access

Abstract

We investigate new sampling strategies for projection tomography, enabling one to employ fewer measurements than expected from classical sampling theory without significant loss of information. Inspired by compressed sensing, our approach is based on the understanding that many real objects are compressible in some known representation, implying that the number of degrees of freedom defining an object is often much smaller than the number of pixels/voxels. We propose a new approach based on quasi-random detector subsampling, whereas previous approaches only addressed subsampling with respect to source location (view angle). The performance of different sampling strategies is considered using object-independent figures of merit, and also based on reconstructions for specific objects, with synthetic and real data. The proposed approach can be implemented using a structured illumination of the interrogated object or the detector array by placing a coded aperture/mask at the source or detector side, respectively. Advantages of the proposed approach include (i) for structured illumination of the detector array, it leads to fewer detector pixels and allows one to integrate detectors for scattered radiation in the unused space; (ii) for structured illumination of the object, it leads to a reduced radiation dose for patients in medical scans; (iii) in the latter case, the blocking of rays reduces scattered radiation while keeping the same energy in the transmitted rays, resulting in a higher signal-to-noise ratio than that achieved by lowering exposure times or the energy of the source; (iv) compared to view-angle subsampling, it allows one to use fewer measurements for the same image quality, or leads to better image quality for the same number of measurements. The proposed approach can also be combined with view-angle subsampling.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Compressive spectral X-ray tomography based on spatial and spectral coded illumination

Angela Cuadros, Xu Ma, and Gonzalo R. Arce
Opt. Express 27(8) 10745-10764 (2019)

Coded aperture optimization in compressive X-ray tomography: a gradient descent approach

Angela P. Cuadros and Gonzalo R. Arce
Opt. Express 25(20) 23833-23849 (2017)

Realization of hybrid compressive imaging strategies

Yun Li, Aswin C. Sankaranarayanan, Lina Xu, Richard Baraniuk, and Kevin F. Kelly
J. Opt. Soc. Am. A 31(8) 1716-1720 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (28)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.