Abstract

A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5–35 GHz, with a maximum of 32dB amplitude imbalance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zalevsky, A. Shemer, V. Eckhouse, D. Mendlovic, and S. Zach, “Radio frequency photonic filter for highly resolved and ultrafast information extraction,” J. Opt. Soc. Am. A 22, 1668–1677 (2005).
    [CrossRef]
  2. M. P. Fok, “Compact and low-latency instantaneous frequency measurement using 38  cm bismuth-oxide fiber and fiber Bragg gratings,” Appl. Opt. 52, 5659–5662 (2013).
    [CrossRef]
  3. L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
    [CrossRef]
  4. H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Reconfigurable photonic feed for sinuous antenna,” J. Lightwave Technol. 30, 2725–2732 (2012).
    [CrossRef]
  5. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
    [CrossRef]
  6. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796 (2009).
    [CrossRef]
  7. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  8. A. J. Seeds, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [CrossRef]
  9. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  10. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
    [CrossRef]
  11. Z. Zhu, S. Zhao, Y. Li, X. Chu, R. Hou, X. Wang, and G. Zhao, “Optimization of an analog intersatellite microwave photonics link with an optical preamplifier,” J. Opt. Soc. Am. A 29, 2525–2531 (2012).
    [CrossRef]
  12. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” in Proceedings of 2009 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2009), pp. 165–168.
  13. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Photonic instantaneous frequency measurement using non-linear optical mixing,” in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.
  14. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express 19, 3531–3541 (2011).
    [CrossRef]
  15. F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. patent7,245,833 (July17, 2007).
  16. S. T. Winnal and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theor. Tech. 47, 1385–1390 (1999).
    [CrossRef]
  17. R. A. Poisel, Introduction to Communication Electronic Warfare Systems (Artech, 2008).
  18. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33, 98–100 (2008).
    [CrossRef]
  19. M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process. 49, 2335–2344 (2002).
    [CrossRef]
  20. R. L. Cupo, “Frequency dependent I/Q imbalance compensation,” U.S. patent20,120,177,084 (July12, 2012).
  21. L. Hai, Z. Xu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun. 58, 448–452 (2010).
    [CrossRef]
  22. S. O. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).
  23. M. Mailand, R. Richter, and H.-J. Jentschel, “IQ-imbalance and its compensation for non-ideal analog receivers comprising frequency-selective components,” Adv. Radio Sci. 4, 189–195 (2006).
    [CrossRef]
  24. J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20, 23623–23629 (2012).
    [CrossRef]
  25. Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
    [CrossRef]
  26. H. Subbaraman, T. Ling, Y.-Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46, 3263–3268 (2007).
    [CrossRef]

2013 (2)

M. P. Fok, “Compact and low-latency instantaneous frequency measurement using 38  cm bismuth-oxide fiber and fiber Bragg gratings,” Appl. Opt. 52, 5659–5662 (2013).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

2012 (3)

2011 (1)

2010 (1)

L. Hai, Z. Xu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun. 58, 448–452 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (2)

2006 (3)

A. J. Seeds, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[CrossRef]

M. Mailand, R. Richter, and H.-J. Jentschel, “IQ-imbalance and its compensation for non-ideal analog receivers comprising frequency-selective components,” Adv. Radio Sci. 4, 189–195 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
[CrossRef]

2005 (2)

Z. Zalevsky, A. Shemer, V. Eckhouse, D. Mendlovic, and S. Zach, “Radio frequency photonic filter for highly resolved and ultrafast information extraction,” J. Opt. Soc. Am. A 22, 1668–1677 (2005).
[CrossRef]

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

2002 (1)

M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process. 49, 2335–2344 (2002).
[CrossRef]

1999 (1)

S. T. Winnal and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theor. Tech. 47, 1385–1390 (1999).
[CrossRef]

Brès, C.-S.

Bui, L.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Photonic instantaneous frequency measurement using non-linear optical mixing,” in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” in Proceedings of 2009 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2009), pp. 165–168.

Bui, L. A.

Cao, P.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Chen, M. Y.

Chen, R. T.

H. Subbaraman, T. Ling, Y.-Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46, 3263–3268 (2007).
[CrossRef]

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Chu, X.

Cupo, R. L.

R. L. Cupo, “Frequency dependent I/Q imbalance compensation,” U.S. patent20,120,177,084 (July12, 2012).

Eckhouse, V.

Emami, H.

H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Reconfigurable photonic feed for sinuous antenna,” J. Lightwave Technol. 30, 2725–2732 (2012).
[CrossRef]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33, 98–100 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” in Proceedings of 2009 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2009), pp. 165–168.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Photonic instantaneous frequency measurement using non-linear optical mixing,” in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

Fok, M. P.

Hai, L.

L. Hai, Z. Xu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun. 58, 448–452 (2010).
[CrossRef]

Harrity, C.

Haykin, S. O.

S. O. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).

Hou, R.

Howely, B.

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Jentschel, H.-J.

M. Mailand, R. Richter, and H.-J. Jentschel, “IQ-imbalance and its compensation for non-ideal analog receivers comprising frequency-selective components,” Adv. Radio Sci. 4, 189–195 (2006).
[CrossRef]

Jiang, Y.

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Jiang, Y.-Q.

Koivunen, V.

M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process. 49, 2335–2344 (2002).
[CrossRef]

Li, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Li, Y.

Lindsay, A. C.

S. T. Winnal and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theor. Tech. 47, 1385–1390 (1999).
[CrossRef]

Ling, T.

Lopez, E.

Macario, J.

Mailand, M.

M. Mailand, R. Richter, and H.-J. Jentschel, “IQ-imbalance and its compensation for non-ideal analog receivers comprising frequency-selective components,” Adv. Radio Sci. 4, 189–195 (2006).
[CrossRef]

Margulis, W.

Martin, R. D.

Mendlovic, D.

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
[CrossRef]

Mitchell, A.

H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Reconfigurable photonic feed for sinuous antenna,” J. Lightwave Technol. 30, 2725–2732 (2012).
[CrossRef]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33, 98–100 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” in Proceedings of 2009 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2009), pp. 165–168.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Photonic instantaneous frequency measurement using non-linear optical mixing,” in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

Nguyen, L. V. T.

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Pan, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Poisel, R. A.

R. A. Poisel, Introduction to Communication Electronic Warfare Systems (Artech, 2008).

Prather, D. W.

Radic, S.

Renfors, M.

M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process. 49, 2335–2344 (2002).
[CrossRef]

Richter, R.

M. Mailand, R. Richter, and H.-J. Jentschel, “IQ-imbalance and its compensation for non-ideal analog receivers comprising frequency-selective components,” Adv. Radio Sci. 4, 189–195 (2006).
[CrossRef]

Rugeland, P.

Sarkhosh, N.

H. Emami, N. Sarkhosh, E. Lopez, and A. Mitchell, “Reconfigurable photonic feed for sinuous antenna,” J. Lightwave Technol. 30, 2725–2732 (2012).
[CrossRef]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33, 98–100 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Photonic instantaneous frequency measurement using non-linear optical mixing,” in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” in Proceedings of 2009 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2009), pp. 165–168.

Schuetz, C. A.

Seeds, A. J.

Shemer, A.

Shi, S.

Shi, Z.

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Sterner, C.

Subbaraman, H.

Tarasenko, O.

Tengstrand, G.

Valkama, M.

M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process. 49, 2335–2344 (2002).
[CrossRef]

Volkening, F. A.

F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. patent7,245,833 (July17, 2007).

Wang, X.

Wiberg, A. O. J.

Winnal, S. T.

S. T. Winnal and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theor. Tech. 47, 1385–1390 (1999).
[CrossRef]

Xu, Z.

L. Hai, Z. Xu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun. 58, 448–452 (2010).
[CrossRef]

Yamashita, K.

L. Hai, Z. Xu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun. 58, 448–452 (2010).
[CrossRef]

Yan, L.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Yao, J.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

Yao, P.

Yu, Z.

Zablocki, A.

Zach, S.

Zalevsky, Z.

Zhao, G.

Zhao, S.

Zhou, Q.

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Zhu, Z.

Zlatanovic, S.

Zou, X.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Adv. Radio Sci. (1)

M. Mailand, R. Richter, and H.-J. Jentschel, “IQ-imbalance and its compensation for non-ideal analog receivers comprising frequency-selective components,” Adv. Radio Sci. 4, 189–195 (2006).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (2)

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[CrossRef]

Y. Jiang, B. Howely, Z. Shi, Q. Zhou, and R. T. Chen, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

IEEE Trans. Commun. (1)

L. Hai, Z. Xu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun. 58, 448–452 (2010).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (3)

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
[CrossRef]

S. T. Winnal and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theor. Tech. 47, 1385–1390 (1999).
[CrossRef]

IEEE Trans. Signal Process. (1)

M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process. 49, 2335–2344 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (6)

F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. patent7,245,833 (July17, 2007).

R. A. Poisel, Introduction to Communication Electronic Warfare Systems (Artech, 2008).

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” in Proceedings of 2009 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2009), pp. 165–168.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Photonic instantaneous frequency measurement using non-linear optical mixing,” in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest (MTT) (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

R. L. Cupo, “Frequency dependent I/Q imbalance compensation,” U.S. patent20,120,177,084 (July12, 2012).

S. O. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Block diagram of a radar I/Q detector.

Fig. 2.
Fig. 2.

Continuous and sampled impulse response.

Fig. 3.
Fig. 3.

Magnitude response of the Hilbert transformer when configured at fo=20GHz.

Fig. 4.
Fig. 4.

Simulated magnitude response.

Fig. 5.
Fig. 5.

MWP I/Q detector setup.

Fig. 6.
Fig. 6.

Measured magnitude response for different fo.

Fig. 7.
Fig. 7.

Measured phase response at different fo.

Fig. 8.
Fig. 8.

I/Q output voltages at 3.5 and 35 GHz.

Tables (2)

Tables Icon

Table 1. Values of λ1 and λ2 for Different Center Frequencies

Tables Icon

Table 2. Amplitude and Phase Performance

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

fd=Vcfo,
H(jω)=jsgn(ω).
h(t)=1πt.
fo=12Δt.
Δt=DLΔλ,

Metrics