Abstract

Here we test interactions of luminance and chromatic input to spatial hyperacuity mechanisms. First, we tested alignment of luminance and chromatic gratings matched or mismatched in contrast polarity or grating type. Thresholds with matched gratings were low while all mismatched pairs were elevated. Second, we determined alignment acuity as a function of luminance or chromatic contrast alone or in the presence of constant contrast components of the other type. For in-phase components, performance followed the envelope of the more sensitive mechanism. However, polarity reversals revealed an asymmetric effect for luminance and chromatic conditions, which suggested that luminance can override chromatic mechanisms in hyperacuity; we interpret these findings in the context of spatial mechanisms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Westheimer, “The spatial sense of the eye,” Investig. Ophthalmol. Vis. Sci. 18, 893–912 (1979).
  2. G. Westheimer, Progress in Sensory Physiology, D. Ottoson, ed. (Springer, 1981), pp. 1–30.
  3. G. Westheimer, “Optical superresolution and visual hyperacuity,” Prog. Retinal Eye Res. 31, 467–480 (2012).
    [CrossRef]
  4. G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vis. Res. 17, 941–947 (1977).
    [CrossRef]
  5. G. Westheimer and S. P. McKee, “Integration regions for visual hyperacuity,” Vis. Res. 17, 89–93 (1977).
    [CrossRef]
  6. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984).
    [CrossRef]
  7. D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval,” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
    [CrossRef]
  8. G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
    [CrossRef]
  9. R. F. Hess and A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vis. Res. 34, 625–643 (1994).
    [CrossRef]
  10. B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).
  11. M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989).
    [CrossRef]
  12. L. R. Rüttiger and B. B. Lee, “Vernier signals derived from primate ganglion cells: effects of motion speed and contrast,” Investig. Ophthalmol. Vis. Sci. 39, S564 (supplement) (1998).
  13. H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004).
    [CrossRef]
  14. S. J. Waugh and D. M. Levi, “Visibility, luminance and vernier acuity,” Vis. Res. 33, 527–538 (1993).
    [CrossRef]
  15. S. J. Waugh and D. M. Levi, “Visibility and vernier acuity for separated targets,” Vis. Res. 33, 539–552 (1993).
    [CrossRef]
  16. R. L. DeValois and K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vis. Res. 31, 1619–1626 (1991).
    [CrossRef]
  17. J. Krauskopf and B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vis. Res. 31, 735–749 (1991).
    [CrossRef]
  18. H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012).
    [CrossRef]
  19. D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vis. Res. 36, 573–588 (1996).
    [CrossRef]
  20. D. M. Levi and S. A. Klein, “The role of separation and eccentricity in encoding position,” Vis. Res. 30, 557–585 (1990).
    [CrossRef]
  21. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  22. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  23. S. Anstis and P. Cavanagh, Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.
  24. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  25. A. Bradley and B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vis. Res. 27, 1817–1824 (1987).
    [CrossRef]
  26. E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988).
    [CrossRef]
  27. G. R. Cole, C. F. Stromeyer, and R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
    [CrossRef]
  28. M. Losada and K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vis. Res. 34, 331–341 (1994).
    [CrossRef]
  29. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
    [CrossRef]
  30. C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
    [CrossRef]
  31. C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000).
    [CrossRef]
  32. S. J. Cropper, “The detection of motion in chromatic stimuli: pedestals and masks,” Vis. Res. 46, 724–738 (2006).
    [CrossRef]
  33. Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
    [CrossRef]
  34. F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).
  35. M. J. Morgan and T. S. Aiba, “Positional acuity with chromatic stimuli,” Vis. Res. 25, 689–695 (1985).
    [CrossRef]
  36. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [CrossRef]
  37. B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005).
    [CrossRef]
  38. H. Sun, B. B. Lee, and L. Rüttiger, Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 79–87.
  39. R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
    [CrossRef]
  40. B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).
  41. S. P. McKee, “The spatial requirements for fine stereoacuity,” Vis. Res. 23, 191–198 (1983).
    [CrossRef]
  42. H. Sun and B. B. Lee, “A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation,” Vis. Neurosci. 21, 315–320 (2004).
    [CrossRef]
  43. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
  44. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
  45. H. Wang and D. M. Levi, “Spatial integration in position acuity,” Vis. Res. 34, 2859–2877 (1994).
    [CrossRef]
  46. S. J. Waugh and D. M. Levi, “Spatial alignment across gaps: contributions of orientation and spatial scale,” J. Opt. Soc. Am. A 12, 2305–2317 (1995).
    [CrossRef]
  47. S. Cropper and S. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
    [CrossRef]
  48. D. R. Simmons and F. A. Kingdom, “Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms,” Vis. Res. 42, 1535–1545 (2002).
    [CrossRef]

2012 (2)

H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012).
[CrossRef]

G. Westheimer, “Optical superresolution and visual hyperacuity,” Prog. Retinal Eye Res. 31, 467–480 (2012).
[CrossRef]

2010 (1)

F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).

2008 (2)

B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

2006 (1)

S. J. Cropper, “The detection of motion in chromatic stimuli: pedestals and masks,” Vis. Res. 46, 724–738 (2006).
[CrossRef]

2005 (2)

B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005).
[CrossRef]

S. Cropper and S. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

2004 (2)

H. Sun and B. B. Lee, “A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation,” Vis. Neurosci. 21, 315–320 (2004).
[CrossRef]

H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004).
[CrossRef]

2002 (1)

D. R. Simmons and F. A. Kingdom, “Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms,” Vis. Res. 42, 1535–1545 (2002).
[CrossRef]

2000 (2)

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000).
[CrossRef]

1999 (1)

Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

1998 (1)

L. R. Rüttiger and B. B. Lee, “Vernier signals derived from primate ganglion cells: effects of motion speed and contrast,” Investig. Ophthalmol. Vis. Sci. 39, S564 (supplement) (1998).

1996 (1)

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vis. Res. 36, 573–588 (1996).
[CrossRef]

1995 (1)

1994 (3)

R. F. Hess and A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vis. Res. 34, 625–643 (1994).
[CrossRef]

M. Losada and K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vis. Res. 34, 331–341 (1994).
[CrossRef]

H. Wang and D. M. Levi, “Spatial integration in position acuity,” Vis. Res. 34, 2859–2877 (1994).
[CrossRef]

1993 (3)

B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).

S. J. Waugh and D. M. Levi, “Visibility, luminance and vernier acuity,” Vis. Res. 33, 527–538 (1993).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility and vernier acuity for separated targets,” Vis. Res. 33, 539–552 (1993).
[CrossRef]

1992 (1)

1991 (2)

R. L. DeValois and K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vis. Res. 31, 1619–1626 (1991).
[CrossRef]

J. Krauskopf and B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vis. Res. 31, 735–749 (1991).
[CrossRef]

1990 (3)

D. M. Levi and S. A. Klein, “The role of separation and eccentricity in encoding position,” Vis. Res. 30, 557–585 (1990).
[CrossRef]

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef]

G. R. Cole, C. F. Stromeyer, and R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef]

1989 (1)

M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989).
[CrossRef]

1988 (1)

E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988).
[CrossRef]

1987 (2)

A. Bradley and B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vis. Res. 27, 1817–1824 (1987).
[CrossRef]

D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval,” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
[CrossRef]

1985 (1)

M. J. Morgan and T. S. Aiba, “Positional acuity with chromatic stimuli,” Vis. Res. 25, 689–695 (1985).
[CrossRef]

1984 (2)

W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1983 (1)

S. P. McKee, “The spatial requirements for fine stereoacuity,” Vis. Res. 23, 191–198 (1983).
[CrossRef]

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1979 (1)

G. Westheimer, “The spatial sense of the eye,” Investig. Ophthalmol. Vis. Sci. 18, 893–912 (1979).

1977 (2)

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vis. Res. 17, 941–947 (1977).
[CrossRef]

G. Westheimer and S. P. McKee, “Integration regions for visual hyperacuity,” Vis. Res. 17, 89–93 (1977).
[CrossRef]

1975 (2)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[CrossRef]

1968 (1)

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

1962 (1)

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).

Aiba, T. S.

M. J. Morgan and T. S. Aiba, “Positional acuity with chromatic stimuli,” Vis. Res. 25, 689–695 (1985).
[CrossRef]

Anstis, S.

S. Anstis and P. Cavanagh, Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.

Bell, J.

F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).

Bradlee, A.

E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988).
[CrossRef]

Bradley, A.

A. Bradley and B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vis. Res. 27, 1817–1824 (1987).
[CrossRef]

Brainard, D. H.

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

Carney, T.

M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989).
[CrossRef]

Cavanagh, P.

S. Anstis and P. Cavanagh, Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.

Chen, C. C.

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000).
[CrossRef]

Cole, G. R.

Cooper, B.

H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012).
[CrossRef]

Cropper, S.

S. Cropper and S. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

Cropper, S. J.

S. J. Cropper, “The detection of motion in chromatic stimuli: pedestals and masks,” Vis. Res. 46, 724–738 (2006).
[CrossRef]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

DeValois, K. K.

R. L. DeValois and K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vis. Res. 31, 1619–1626 (1991).
[CrossRef]

E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988).
[CrossRef]

DeValois, R. L.

R. L. DeValois and K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vis. Res. 31, 1619–1626 (1991).
[CrossRef]

Farell, B.

J. Krauskopf and B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vis. Res. 31, 735–749 (1991).
[CrossRef]

Foley, J. M.

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000).
[CrossRef]

Freeman, R. D.

M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989).
[CrossRef]

Gegenfurtner, K. R.

Geisler, W. S.

Gheorghiu, E.

F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).

Hayes, A.

R. F. Hess and A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vis. Res. 34, 625–643 (1994).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Herzog, M. H.

B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).

Hess, R. F.

R. F. Hess and A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vis. Res. 34, 625–643 (1994).
[CrossRef]

Hubel, D. H.

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).

Kingdom, F. A.

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

D. R. Simmons and F. A. Kingdom, “Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms,” Vis. Res. 42, 1535–1545 (2002).
[CrossRef]

Kingdom, F. A. A.

F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).

Kiper, D. C.

Klein, S. A.

D. M. Levi and S. A. Klein, “The role of separation and eccentricity in encoding position,” Vis. Res. 30, 557–585 (1990).
[CrossRef]

Krauskopf, J.

J. Krauskopf and B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vis. Res. 31, 735–749 (1991).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Kremers, J.

B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).

Kronauer, R. E.

Lee, B. B.

H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012).
[CrossRef]

B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005).
[CrossRef]

H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004).
[CrossRef]

H. Sun and B. B. Lee, “A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation,” Vis. Neurosci. 21, 315–320 (2004).
[CrossRef]

L. R. Rüttiger and B. B. Lee, “Vernier signals derived from primate ganglion cells: effects of motion speed and contrast,” Investig. Ophthalmol. Vis. Sci. 39, S564 (supplement) (1998).

B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).

H. Sun, B. B. Lee, and L. Rüttiger, Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 79–87.

Lennie, P.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Lesmes, L. A.

Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Levi, D. M.

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vis. Res. 36, 573–588 (1996).
[CrossRef]

S. J. Waugh and D. M. Levi, “Spatial alignment across gaps: contributions of orientation and spatial scale,” J. Opt. Soc. Am. A 12, 2305–2317 (1995).
[CrossRef]

H. Wang and D. M. Levi, “Spatial integration in position acuity,” Vis. Res. 34, 2859–2877 (1994).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility and vernier acuity for separated targets,” Vis. Res. 33, 539–552 (1993).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility, luminance and vernier acuity,” Vis. Res. 33, 527–538 (1993).
[CrossRef]

D. M. Levi and S. A. Klein, “The role of separation and eccentricity in encoding position,” Vis. Res. 30, 557–585 (1990).
[CrossRef]

D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval,” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
[CrossRef]

Losada, M.

M. Losada and K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vis. Res. 34, 331–341 (1994).
[CrossRef]

Lu, Z. N.

Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Malkoc, G.

F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).

McKee, S. P.

S. P. McKee, “The spatial requirements for fine stereoacuity,” Vis. Res. 23, 191–198 (1983).
[CrossRef]

G. Westheimer and S. P. McKee, “Integration regions for visual hyperacuity,” Vis. Res. 17, 89–93 (1977).
[CrossRef]

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vis. Res. 17, 941–947 (1977).
[CrossRef]

G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[CrossRef]

Mitchell, D. E.

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef]

Morgan, M. J.

M. J. Morgan and T. S. Aiba, “Positional acuity with chromatic stimuli,” Vis. Res. 25, 689–695 (1985).
[CrossRef]

Mullen, K. T.

M. Losada and K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vis. Res. 34, 331–341 (1994).
[CrossRef]

O’Shea, R. P.

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef]

Paradiso, M. A.

M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989).
[CrossRef]

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Ruttiger, L.

H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004).
[CrossRef]

Rüttiger, L.

B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005).
[CrossRef]

H. Sun, B. B. Lee, and L. Rüttiger, Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 79–87.

Rüttiger, L. R.

L. R. Rüttiger and B. B. Lee, “Vernier signals derived from primate ganglion cells: effects of motion speed and contrast,” Investig. Ophthalmol. Vis. Sci. 39, S564 (supplement) (1998).

Sayim, B.

B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).

Shevell, S. K.

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Simmons, D. R.

D. R. Simmons and F. A. Kingdom, “Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms,” Vis. Res. 42, 1535–1545 (2002).
[CrossRef]

Skottun, B. C.

A. Bradley and B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vis. Res. 27, 1817–1824 (1987).
[CrossRef]

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Sperling, G.

Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Stromeyer, C. F.

Sun, H.

H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012).
[CrossRef]

B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005).
[CrossRef]

H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004).
[CrossRef]

H. Sun and B. B. Lee, “A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation,” Vis. Neurosci. 21, 315–320 (2004).
[CrossRef]

H. Sun, B. B. Lee, and L. Rüttiger, Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 79–87.

Switkes, E.

E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988).
[CrossRef]

Wang, H.

H. Wang and D. M. Levi, “Spatial integration in position acuity,” Vis. Res. 34, 2859–2877 (1994).
[CrossRef]

Waugh, S. J.

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vis. Res. 36, 573–588 (1996).
[CrossRef]

S. J. Waugh and D. M. Levi, “Spatial alignment across gaps: contributions of orientation and spatial scale,” J. Opt. Soc. Am. A 12, 2305–2317 (1995).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility, luminance and vernier acuity,” Vis. Res. 33, 527–538 (1993).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility and vernier acuity for separated targets,” Vis. Res. 33, 539–552 (1993).
[CrossRef]

Wehrhahn, C.

B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).

Westheimer, G.

G. Westheimer, “Optical superresolution and visual hyperacuity,” Prog. Retinal Eye Res. 31, 467–480 (2012).
[CrossRef]

B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).

B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).

D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval,” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
[CrossRef]

G. Westheimer, “The spatial sense of the eye,” Investig. Ophthalmol. Vis. Sci. 18, 893–912 (1979).

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vis. Res. 17, 941–947 (1977).
[CrossRef]

G. Westheimer and S. P. McKee, “Integration regions for visual hyperacuity,” Vis. Res. 17, 89–93 (1977).
[CrossRef]

G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[CrossRef]

G. Westheimer, Progress in Sensory Physiology, D. Ottoson, ed. (Springer, 1981), pp. 1–30.

Wiesel, T. N.

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wuerger, S.

S. Cropper and S. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

Annu. Rev. Psychol. (1)

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Behav. Cogn. Neurosci. Rev. (1)

S. Cropper and S. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (2)

G. Westheimer, “The spatial sense of the eye,” Investig. Ophthalmol. Vis. Sci. 18, 893–912 (1979).

L. R. Rüttiger and B. B. Lee, “Vernier signals derived from primate ganglion cells: effects of motion speed and contrast,” Investig. Ophthalmol. Vis. Sci. 39, S564 (supplement) (1998).

J. Neurosci. (1)

B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).

J. Opt. Soc. Am. (2)

E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988).
[CrossRef]

G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Physiol. (3)

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis. (2)

F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).

B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).

Perception (2)

B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005).
[CrossRef]

R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Prog. Retinal Eye Res. (1)

G. Westheimer, “Optical superresolution and visual hyperacuity,” Prog. Retinal Eye Res. 31, 467–480 (2012).
[CrossRef]

Vis. Neurosci. (1)

H. Sun and B. B. Lee, “A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation,” Vis. Neurosci. 21, 315–320 (2004).
[CrossRef]

Vis. Res. (23)

D. R. Simmons and F. A. Kingdom, “Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms,” Vis. Res. 42, 1535–1545 (2002).
[CrossRef]

S. P. McKee, “The spatial requirements for fine stereoacuity,” Vis. Res. 23, 191–198 (1983).
[CrossRef]

H. Wang and D. M. Levi, “Spatial integration in position acuity,” Vis. Res. 34, 2859–2877 (1994).
[CrossRef]

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vis. Res. 17, 941–947 (1977).
[CrossRef]

G. Westheimer and S. P. McKee, “Integration regions for visual hyperacuity,” Vis. Res. 17, 89–93 (1977).
[CrossRef]

M. Losada and K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vis. Res. 34, 331–341 (1994).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000).
[CrossRef]

S. J. Cropper, “The detection of motion in chromatic stimuli: pedestals and masks,” Vis. Res. 46, 724–738 (2006).
[CrossRef]

M. J. Morgan and T. S. Aiba, “Positional acuity with chromatic stimuli,” Vis. Res. 25, 689–695 (1985).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989).
[CrossRef]

R. F. Hess and A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vis. Res. 34, 625–643 (1994).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

A. Bradley and B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vis. Res. 27, 1817–1824 (1987).
[CrossRef]

H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility, luminance and vernier acuity,” Vis. Res. 33, 527–538 (1993).
[CrossRef]

S. J. Waugh and D. M. Levi, “Visibility and vernier acuity for separated targets,” Vis. Res. 33, 539–552 (1993).
[CrossRef]

R. L. DeValois and K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vis. Res. 31, 1619–1626 (1991).
[CrossRef]

J. Krauskopf and B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vis. Res. 31, 735–749 (1991).
[CrossRef]

H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012).
[CrossRef]

D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vis. Res. 36, 573–588 (1996).
[CrossRef]

D. M. Levi and S. A. Klein, “The role of separation and eccentricity in encoding position,” Vis. Res. 30, 557–585 (1990).
[CrossRef]

Other (3)

S. Anstis and P. Cavanagh, Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.

G. Westheimer, Progress in Sensory Physiology, D. Ottoson, ed. (Springer, 1981), pp. 1–30.

H. Sun, B. B. Lee, and L. Rüttiger, Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 79–87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Upper panels show 2-cycle samples of the 9 conditions tested in the “cross-channel” experiment: matching contrast and polarity [+Lum/+Lum (1), +LM/+LM (3), and +S/+S (6)], out-of-phase contrast polarity [+Lum/Lum (2), +LM/LM (4), +S/S (7)], and cross-channel conditions [Lum/LM (5), Lum/S (8), and LM/S(9)]. In the lower panels are psychophysical thresholds from two subjects. Thresholds in matched conditions (light gray, starred bars) were found to be significantly lower than the reverse-polarity (dark gray bars) and cross-channel conditions (black bars). Error bars indicate standard deviation.

Fig. 2.
Fig. 2.

Stimulus configurations for alignment targets. Contrast modulation depth increases from the bottom to the top row. Vertical arrows indicate an increase in contrast and vertical bars indicate a constant contrast component (a) Achromatic luminance modulation., (b) Equiluminant chromatic modulation. (c) Luminance contrast was varied with a constant 25% chromatic contrast component. (d) Luminance contrast was varied with an out-of-phase 25% chromatic contrast component. Subjects were instructed to use luminance cues to perform the task (i.e., align a dark green bar with a dark red bar). (e) Chromatic contrast was varied with a constant 10% luminance contrast component. (f) Chromatic contrast was varied with an out-of-phase 10% luminance task. Subjects were instructed to use chromatic cues to perform the task (i.e., align a light red bar with a dark red bar).

Fig. 3.
Fig. 3.

Alignment thresholds for sinusoidal luminance and chromatic grating pairs. In all panels, thresholds are given in degrees of phase angle as a function of contrast (%). All panels display a subject’s thresholds for luminance modulation (solid black lines) and equiluminant chromatic modulation (solid gray lines). The top row shows thresholds for two subjects, BC on the left and MJ on the right, for the in-phase (i.e., matched polarity) conditions. Performance is determined by the more sensitive mechanisms: at contrast values below that of the constant contrast component (arrows indicate the data points for observer BC), the constant component determines hyperacuity judgments. However, when contrast modulation is greater than the constant contrast component, thresholds follow the envelope of the modulated contrast component. Out-of-phase (i.e., reversed polarity) conditions for both observers are given in the bottom row. Contrast polarity reversal of luminance and chromatic components has an asymmetric effect on hyperacuity thresholds; chromatic reversal had little effect, whereas thresholds sharply degrade with luminance contrast reversal. Error bars indicate standard deviation.

Metrics