Abstract

The generic framework of metamerism implies that the number of sensors is smaller than the dimension of the stimulus. The metameric black paradigm was introduced by Wyszecki [Farbe 2, 39 (1953)] and developed by Cohen and Kappauf [Am. J. Psychol. 95, 537 (1982)]. Within a multireceptor and multiprimary scheme, we investigate how far the choice of illumination can isolate a photoreceptor response. The spectral profiles of the fundamental metamers that correspond to a collection of (x,y) values over the chromaticity diagram are shown. When the luminance is set at a fixed value, the relative excitation of the melanopsin cells and of the rods elicited by the fundamental metamers varies over the chromaticity diagram. The range of excitation of the melanopsin cells and of the rods that could be achieved at a given chromaticity, by manipulating the metameric black content, is examined. When only the melanopsin excitation is manipulated, the range of melanopsin excitation that can be achieved is rather limited. On the chromaticity diagram, the largest range of variation of the rods and the melanopsin cells excitation is obtained for (x,y) chromaticity coordinates near (1/3,1/3). Extension of Cohen’s procedure to rod and cone metamers is proposed. The higher the number of spectral bands, the wider the choice of metameric lights.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ostwald, Physikalische Farbenlehre (VerlagUnesma, 1919), p. 237.
  2. P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), pp. 124–125.
  3. R. J. Clarke, “Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons,” J. Neurophysiol. 89, 3168–3178 (2003).
    [CrossRef]
  4. D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
    [CrossRef]
  5. Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
    [CrossRef]
  6. R. W. Rodieck, “Which two lights that match for cones show the greatest ratio for rods?” Vis. Res. 16, 303–307 (1976).
    [CrossRef]
  7. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
    [CrossRef]
  8. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
    [CrossRef]
  9. P. W. Trezona, “The tetrachromatic colour match as a colorimetric technique,” Vis. Res. 13, 9–25 (1973).
    [CrossRef]
  10. J. del Barco, L. E. Hita, J. Romero, and J. Vida, “Color-prediction discrepancies and differential chromaticity thresholds with photopigment bleaching,” J. Opt. Soc. Am. A 5, 432–437 (1988).
    [CrossRef]
  11. W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
    [CrossRef]
  12. W. S. Stiles and G. Wyszecki, “Rod intrusion in large-field color matching,” Acta Chromatica 2, 155–163 (1973).
  13. S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
    [CrossRef]
  14. H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
    [CrossRef]
  15. T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
    [CrossRef]
  16. G. Wyszecki, “Valenzmetrische untersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie,” Farbe 2, 39–52 (1953).
  17. J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982).
    [CrossRef]
  18. J. B. Cohen, Visual Color and Color Mixture: The Fundamental Color Space (University of Illinois, 2001).
  19. C. van Trigt, “Visual system-response functions and estimating reflectance,” J. Opt. Soc. Am. A 14, 741–755 (1997).
    [CrossRef]
  20. R. G. Kuehni, “Intersection nodes of metameric matches,” Color Res. Appl. 4, 101–102 (1979).
  21. S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).
  22. R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
    [CrossRef]
  23. G. D. Finlayson and P. M. Morovic, “Metamer sets,” J. Opt. Soc. Am. A 22, 810–819 (2005).
    [CrossRef]
  24. M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–204 (1986).
    [CrossRef]
  25. F. H. Imai and R. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of the IS&T/SID Sixth Color Imaging Conference (1988), pp. 224–227.
  26. A. Alsam and R. Lenz, “Calibrating color cameras using metameric blacks,” J. Opt. Soc. Am. A 24, 11–17 (2007).
    [CrossRef]
  27. G. Wyszecki, “Evaluation of metameric colors,” J. Opt. Soc. Am. 48, 451–452 (1958).
    [CrossRef]
  28. K. Knoblauch and S. K. Shevell, “Color appearance,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2003), pp. 892–907.
  29. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  30. CIE, “Fundamental chromaticity diagram with physiological axes—Part 1,” CIE Publication (CIE, 2007).
  31. CIE, “International electrotechnical vocabulary,” CIE Publication (CIE, 1987), Section 845-01-22, http://www.electropedia.org/iev/iev.nsf/index?openform&part=845 .
  32. L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.
  33. A. Sarkar, F. Autrusseau, F. Viénot, P. Le Callet, and L. Blondé, “From CIE 2006 physiological model to improved age-dependent and average colorimetric observers,” J. Opt. Soc. Am. A 28, 2033–2048 (2011).
    [CrossRef]
  34. F. Viénot, L. Serreault, and P. Pardo Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Vis. Neurosci. 23, 1–8 (2006).
    [CrossRef]
  35. F. Viénot, H. Brettel, T.-V. Dang, and J. Le Rohellec, “Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods,” J. Opt. Soc. Am. A 29, A366–A376 (2012).
    [CrossRef]
  36. A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 53–87.
  37. M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
    [CrossRef]
  38. J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
    [CrossRef]
  39. J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
    [CrossRef]
  40. H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (λmax⁡≈479  nm) supporting activation of Gq11 and Gi/o signalling cascades.” Proc. R. Soc. B 280, 20122987 (2013).
    [CrossRef]
  41. L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
    [CrossRef]
  42. T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
    [CrossRef]
  43. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
    [CrossRef]
  44. R. Oldenhuis, “Optimize (non)linear (in)equality constrained functions with FMINSEARCH,” 2009, http://www.mathworks.com/matlabcentral/fileexchange/24298-optimize24298-optimize .
  45. O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
    [CrossRef]

2013 (3)

H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
[CrossRef]

H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (λmax⁡≈479  nm) supporting activation of Gq11 and Gi/o signalling cascades.” Proc. R. Soc. B 280, 20122987 (2013).
[CrossRef]

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

2012 (4)

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

F. Viénot, H. Brettel, T.-V. Dang, and J. Le Rohellec, “Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods,” J. Opt. Soc. Am. A 29, A366–A376 (2012).
[CrossRef]

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
[CrossRef]

2011 (2)

A. Sarkar, F. Autrusseau, F. Viénot, P. Le Callet, and L. Blondé, “From CIE 2006 physiological model to improved age-dependent and average colorimetric observers,” J. Opt. Soc. Am. A 28, 2033–2048 (2011).
[CrossRef]

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

2010 (1)

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

2009 (2)

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

2008 (1)

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

2007 (1)

2006 (1)

F. Viénot, L. Serreault, and P. Pardo Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Vis. Neurosci. 23, 1–8 (2006).
[CrossRef]

2005 (3)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
[CrossRef]

G. D. Finlayson and P. M. Morovic, “Metamer sets,” J. Opt. Soc. Am. A 22, 810–819 (2005).
[CrossRef]

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

2004 (1)

R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
[CrossRef]

2003 (1)

R. J. Clarke, “Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons,” J. Neurophysiol. 89, 3168–3178 (2003).
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).

1988 (1)

1986 (1)

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–204 (1986).
[CrossRef]

1982 (2)

J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982).
[CrossRef]

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

1979 (1)

R. G. Kuehni, “Intersection nodes of metameric matches,” Color Res. Appl. 4, 101–102 (1979).

1976 (1)

R. W. Rodieck, “Which two lights that match for cones show the greatest ratio for rods?” Vis. Res. 16, 303–307 (1976).
[CrossRef]

1973 (2)

P. W. Trezona, “The tetrachromatic colour match as a colorimetric technique,” Vis. Res. 13, 9–25 (1973).
[CrossRef]

W. S. Stiles and G. Wyszecki, “Rod intrusion in large-field color matching,” Acta Chromatica 2, 155–163 (1973).

1959 (1)

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

1958 (1)

1953 (1)

G. Wyszecki, “Valenzmetrische untersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie,” Farbe 2, 39–52 (1953).

al Enezi, J.

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

al-Enezi, J.

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

Allen, A. E.

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Alsam, A.

Autrusseau, F.

Bailes, H. J.

H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (λmax⁡≈479  nm) supporting activation of Gq11 and Gi/o signalling cascades.” Proc. R. Soc. B 280, 20122987 (2013).
[CrossRef]

Bedford, R.

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Bergles, D. E.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

Berns, R. S.

F. H. Imai and R. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of the IS&T/SID Sixth Color Imaging Conference (1988), pp. 224–227.

Blondé, L.

Boynton, R. M.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), pp. 124–125.

Brettel, H.

Brill, M. H.

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–204 (1986).
[CrossRef]

Brown, T.

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

Brown, T. M.

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Burch, J. M.

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

Burns, S. A.

S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).

Cao, D.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

Chua, E. C.-P.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Clarke, R. J.

R. J. Clarke, “Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons,” J. Neurophysiol. 89, 3168–3178 (2003).
[CrossRef]

Cohen, J. B.

S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).

J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982).
[CrossRef]

J. B. Cohen, Visual Color and Color Mixture: The Fundamental Color Space (University of Illinois, 2001).

Cooper, H. M.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Cornut, P.-L.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Czeisler, C. A.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Dacey, D. M.

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

Dang, T.-V.

del Barco, J.

Denis, P.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Do, M. T. H.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

Dougherty, R. F.

H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
[CrossRef]

Drouyer, E.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Estévez, O.

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

Finlayson, G. D.

Fukuda, Y.

Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
[CrossRef]

Gamlin, P. D.

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

Gooley, J. J.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Gronfier, C.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Hanley, C. J.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Higuchi, S.

Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
[CrossRef]

Hinks, D.

R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
[CrossRef]

Hita, L. E.

Ho Mien, I.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Hommes, V.

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

Horiguchi, H.

H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
[CrossRef]

Hull, J. T.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Imai, F. H.

F. H. Imai and R. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of the IS&T/SID Sixth Color Imaging Conference (1988), pp. 224–227.

Jägle, H.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.

Kaiser, P. K.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), pp. 124–125.

Kang, S. H.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

Kappauf, W. E.

J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982).
[CrossRef]

Knoblauch, K.

K. Knoblauch and S. K. Shevell, “Color appearance,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2003), pp. 892–907.

Kuehni, R.

R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
[CrossRef]

Kuehni, R. G.

R. G. Kuehni, “Intersection nodes of metameric matches,” Color Res. Appl. 4, 101–102 (1979).

Kuznetsov, E. N.

S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).

Le Callet, P.

Le Rohellec, J.

Lenz, R.

Liao, H.-W.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

Lockley, S. W.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Lucas, R.

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

Lucas, R. J.

H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (λmax⁡≈479  nm) supporting activation of Gq11 and Gi/o signalling cascades.” Proc. R. Soc. B 280, 20122987 (2013).
[CrossRef]

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Morita, T.

Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
[CrossRef]

Morovic, P. M.

Mure, L. S.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Nathans, J.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.

Nuruki, A.

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

Ohama, D.

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

Ohno, Y.

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
[CrossRef]

Ostwald, W.

W. Ostwald, Physikalische Farbenlehre (VerlagUnesma, 1919), p. 237.

Pardo Fernandez, P.

F. Viénot, L. Serreault, and P. Pardo Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Vis. Neurosci. 23, 1–8 (2006).
[CrossRef]

Peterson, B. B.

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

Pokorny, J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[CrossRef]

Ramanath, R.

R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
[CrossRef]

Revell, V.

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

Rieux, C.

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

Robinson, F. R.

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

Rodieck, R. W.

R. W. Rodieck, “Which two lights that match for cones show the greatest ratio for rods?” Vis. Res. 16, 303–307 (1976).
[CrossRef]

Romero, J.

Sarkar, A.

Schlangen, L.

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

Serreault, L.

F. Viénot, L. Serreault, and P. Pardo Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Vis. Neurosci. 23, 1–8 (2006).
[CrossRef]

Shapiro, A. G.

Sharpe, L. T.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.

A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 53–87.

Shevell, S. K.

K. Knoblauch and S. K. Shevell, “Color appearance,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2003), pp. 892–907.

Smith, V. C.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[CrossRef]

Snyder, W.

R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
[CrossRef]

Spekreijse, H.

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

St. Hilaire, M. A.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Stiles, W. S.

W. S. Stiles and G. Wyszecki, “Rod intrusion in large-field color matching,” Acta Chromatica 2, 155–163 (1973).

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Stockman, A.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.

A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 53–87.

Trezona, P. W.

P. W. Trezona, “The tetrachromatic colour match as a colorimetric technique,” Vis. Res. 13, 9–25 (1973).
[CrossRef]

Tsujimura, S.

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

Ukai, K.

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

van Reen, E.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

van Trigt, C.

Vickery, G.

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Vida, J.

Viénot, F.

Vugler, A.

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Wandell, B. A.

H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
[CrossRef]

West, G.

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–204 (1986).
[CrossRef]

Winawer, J.

H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
[CrossRef]

Wynne, J.

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

Wyszecki, G.

W. S. Stiles and G. Wyszecki, “Rod intrusion in large-field color matching,” Acta Chromatica 2, 155–163 (1973).

G. Wyszecki, “Evaluation of metameric colors,” J. Opt. Soc. Am. 48, 451–452 (1958).
[CrossRef]

G. Wyszecki, “Valenzmetrische untersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie,” Farbe 2, 39–52 (1953).

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Xue, T.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

Yasukouchi, A.

Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
[CrossRef]

Yau, K.-W.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

Yeo, S.-C.

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

Yunokuchi, K.

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

Zele, A. J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

Zhong, H.

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

Acta Chromatica (1)

W. S. Stiles and G. Wyszecki, “Rod intrusion in large-field color matching,” Acta Chromatica 2, 155–163 (1973).

Am. J. Psychol. (1)

J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982).
[CrossRef]

Color Res. Appl. (4)

R. G. Kuehni, “Intersection nodes of metameric matches,” Color Res. Appl. 4, 101–102 (1979).

S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).

R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004).
[CrossRef]

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–204 (1986).
[CrossRef]

Curr. Biol. (1)

T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[CrossRef]

Farbe (1)

G. Wyszecki, “Valenzmetrische untersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie,” Farbe 2, 39–52 (1953).

J. Biol. Rhythms (1)

J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011).
[CrossRef]

J. Neurophysiol. (1)

R. J. Clarke, “Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons,” J. Neurophysiol. 89, 3168–3178 (2003).
[CrossRef]

J. Neurosci. (1)

J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

J. Physiol. Anthropol. (1)

Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012).
[CrossRef]

Nature (2)

D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[CrossRef]

M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009).
[CrossRef]

Opt. Acta (1)

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

Opt. Eng. (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
[CrossRef]

PLoS ONE (2)

L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009).
[CrossRef]

T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013).
[CrossRef]

Proc. R. Soc. B (2)

S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010).
[CrossRef]

H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (λmax⁡≈479  nm) supporting activation of Gq11 and Gi/o signalling cascades.” Proc. R. Soc. B 280, 20122987 (2013).
[CrossRef]

Vis. Neurosci. (1)

F. Viénot, L. Serreault, and P. Pardo Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Vis. Neurosci. 23, 1–8 (2006).
[CrossRef]

Vis. Res. (4)

R. W. Rodieck, “Which two lights that match for cones show the greatest ratio for rods?” Vis. Res. 16, 303–307 (1976).
[CrossRef]

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

P. W. Trezona, “The tetrachromatic colour match as a colorimetric technique,” Vis. Res. 13, 9–25 (1973).
[CrossRef]

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

Other (11)

R. Oldenhuis, “Optimize (non)linear (in)equality constrained functions with FMINSEARCH,” 2009, http://www.mathworks.com/matlabcentral/fileexchange/24298-optimize24298-optimize .

W. Ostwald, Physikalische Farbenlehre (VerlagUnesma, 1919), p. 237.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), pp. 124–125.

J. B. Cohen, Visual Color and Color Mixture: The Fundamental Color Space (University of Illinois, 2001).

A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 53–87.

K. Knoblauch and S. K. Shevell, “Color appearance,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2003), pp. 892–907.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

CIE, “Fundamental chromaticity diagram with physiological axes—Part 1,” CIE Publication (CIE, 2007).

CIE, “International electrotechnical vocabulary,” CIE Publication (CIE, 1987), Section 845-01-22, http://www.electropedia.org/iev/iev.nsf/index?openform&part=845 .

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.

F. H. Imai and R. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of the IS&T/SID Sixth Color Imaging Conference (1988), pp. 224–227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Relative spectral power distribution of the metameric blacks for 41 monochromatic stimuli. Metameric black corresponding to 550 nm in bold.

Fig. 2.
Fig. 2.

Relative spectral power distribution of fundamental metamers at a number of chromaticity coordinates.

Fig. 3.
Fig. 3.

Rod (dark gray bars) and ipRGC (light gray bars) excitation aroused by the fundamental metamers, at a number of chromaticity coordinates. The spectral sensitivities of the melanopsin and the rods have been normalized at peak for the calculation.

Fig. 4.
Fig. 4.

Relative spectral power distribution of the fundamental metamer for cones (black line) and of the same fundamental metamer to which two different metameric blacks were added that excite melanopsin and rods at maximum (solid blue line) and at minimum (dashed blue line). Chromaticity coordinates ( x F , 10 y F , 10 ) = ( 0.3 , 0.3 ) , melanopsin excitation contrast ratio 2.19 1.0 , and rod excitation contrast ratio 1.75 1.0 .

Fig. 5.
Fig. 5.

Relative spectral power distribution of the fundamental metamer for cones and rods (black line) and of the same fundamental metamer to which two different metameric blacks were added that excite melanopsin at maximum (solid orange line) and at minimum (dashed orange line) without changing rod excitation. Chromaticity coordinates ( x F , 10 , y F , 10 ) = ( 0.3 , 0.3 ) and melanopsin excitation contrast ratio 1.19 1.0 .

Fig. 6.
Fig. 6.

Prediction of receptor relative excitation obtained from the metamers that excite melanopsin and rods at maximum and at minimum (blue lines, top and bottom) and from the ones that excite melanopsin at maximum and at minimum when the rod excitation is fixed (orange lines) for a color stimulus at chromaticity coordinates ( x F , 10 , y F , 10 ) equal to (0.3, 0.3). The spectral sensitivities of all photoreceptors have been normalized at peak for the calculation.

Fig. 7.
Fig. 7.

Prediction of receptor relative excitation obtained from the metamers that excite melanopsin and rods at maximum and at minimum (blue lines) and from the ones that excite melanopsin at maximum and at minimum when the rod excitation is fixed (orange lines) for a number of chromaticity coordinates.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

N = N * + B ,
N = [ N λ 1 N λ 2 N λ k ] .
T = A N .
A = [ X F , 10 Y F , 10 Z F , 10 ] ,
A N 1 = A N 2 = = A N i = A N m = T .
A ( A A ) 1 A N 1 = = A ( A A ) 1 A N m = A ( A A ) 1 T = N * ,
N * = A ( A A ) 1 T .
T = ( Y F , 10 / y F , 10 ) [ x F , 10 y F , 10 1 x F , 10 y F , 10 ] ,
N * = A ( A A ) 1 A N .
R = A ( A A ) 1 A ,
N * = RN ,
N = RN + B ,
B = N RN .
B = IN RN ,
B = ( I R ) N .
B = R B N .
A B = [ 0 0 0 ] ,
A CR = [ X F , 10 Y F , 10 Z F , 10 V rod ] .
A CR B CR = [ 0 0 0 0 ] ,

Metrics