Abstract

The ratio of long-wavelength to medium-wavelength sensitive cones varies significantly among people. In order to investigate the possible effect of this variation in large numbers of participants, a quick and efficient method to estimate the ratio is required. The OSCAR test has been utilized previously for this purpose, but it is no longer available commercially. Having access to one of the few remaining OSCAR instruments, we compared the observers’ mean settings to those obtained with the Medmont C100, a newer but apparently similar device. We also obtained Rayleigh matches for each participant. One hundred volunteers took part in the study. Settings on the OSCAR test were highly correlated with those on the Medmont C100. Both tests appeared to be influenced not only by LM cone ratios but also by the spectral positions of the cone photopigments, since anomaloscope midmatch points accounted for a significant proportion of the variance. We conclude that the Medmont C100 can be used as a suitable replacement for the OSCAR test and has a role in the rapid estimation of LM cone ratios.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1949).
    [CrossRef]
  2. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.
  3. J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  4. J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
    [CrossRef]
  5. J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human and primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.
  6. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef]
  7. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
    [CrossRef]
  8. K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
    [CrossRef]
  9. S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
    [CrossRef]
  10. S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
    [CrossRef]
  11. O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
    [CrossRef]
  12. G. Verriest and A. Uvijls, “Results of the OSCAR test in groups of normal and abnormal subjects,” in Colour Vision Deficiencies IX, B. Drum and G. Verriest, eds. (Kluwer Academic, 1988), pp. 479–485.
  13. G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 385–392.
  14. M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res., 78, 26–38 (2013).
    [CrossRef]
  15. F. Zisman, K. R. Seger, and A. J. Adams, “Specificity evaluation of the OSCAR color vision test,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (W. Junk Publishers, 1987), pp. 173–176.
  16. A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).
  17. A. B. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
    [CrossRef]
  18. R. W. Harris and B. L. Cole, “Diagnosing protan heterozygosity using the Medmont C-100 colour vision test,” Clin. Exp. Optom. 88, 240–247 (2005).
    [CrossRef]
  19. W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
    [CrossRef]
  20. C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Die Farbe 34, 59–66 (1987).
  21. K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vis. Res. 42, 1367–1378 (2002).
    [CrossRef]
  22. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
    [CrossRef]
  23. G. Jordan and J. D. Mollon, “Unique hues in heterozygotes for protan and deutan deficiencies,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 67–76.
  24. D. H. Brainard, A. Roorda, Y. Yamaguchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]

2013 (1)

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res., 78, 26–38 (2013).
[CrossRef]

2008 (1)

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

2006 (1)

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

2005 (3)

S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

R. W. Harris and B. L. Cole, “Diagnosing protan heterozygosity using the Medmont C-100 colour vision test,” Clin. Exp. Optom. 88, 240–247 (2005).
[CrossRef]

2002 (2)

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
[CrossRef]

K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vis. Res. 42, 1367–1378 (2002).
[CrossRef]

2000 (2)

1998 (2)

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

1992 (1)

A. B. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

1987 (1)

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Die Farbe 34, 59–66 (1987).

1983 (1)

O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
[CrossRef]

1964 (1)

W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

1949 (1)

Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1949).
[CrossRef]

Adams, A. J.

F. Zisman, K. R. Seger, and A. J. Adams, “Specificity evaluation of the OSCAR color vision test,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (W. Junk Publishers, 1987), pp. 173–176.

Baker, H. D.

W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

Bargary, G.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

Baron, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Baron, R.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Berendschot, T. T. J. M.

Bieber, M. L.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Bosten, J. M.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

Bowmaker, J. K.

J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human and primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.

Brainard, D. H.

Calderone, J. B.

Carroll, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
[CrossRef]

Chan, C. H.

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res., 78, 26–38 (2013).
[CrossRef]

Cicerone, C. M.

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Die Farbe 34, 59–66 (1987).

Cole, B. L.

R. W. Harris and B. L. Cole, “Diagnosing protan heterozygosity using the Medmont C-100 colour vision test,” Clin. Exp. Optom. 88, 240–247 (2005).
[CrossRef]

Danilova, M. V.

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res., 78, 26–38 (2013).
[CrossRef]

de Vries, Hl.

Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1949).
[CrossRef]

Deeb, S. S.

S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
[CrossRef]

Dobkins, K. R.

K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vis. Res. 42, 1367–1378 (2002).
[CrossRef]

Estévez, O.

O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
[CrossRef]

Goodbourn, P. T.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

Gunther, K. L.

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vis. Res. 42, 1367–1378 (2002).
[CrossRef]

Harris, R. W.

R. W. Harris and B. L. Cole, “Diagnosing protan heterozygosity using the Medmont C-100 colour vision test,” Clin. Exp. Optom. 88, 240–247 (2005).
[CrossRef]

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Hogg, R. E.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

Hood, S. M.

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

Jacobs, G. H.

D. H. Brainard, A. Roorda, Y. Yamaguchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.

Jordan, G.

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 385–392.

G. Jordan and J. D. Mollon, “Unique hues in heterozygotes for protan and deutan deficiencies,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 67–76.

Knau, H.

Kraft, J. M.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Kremers, J.

Lawrance-Owen, A. J.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

Metha, A.

Metha, A. B.

A. B. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

Miyahara, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Mollon, J. D.

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res., 78, 26–38 (2013).
[CrossRef]

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human and primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.

G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 385–392.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

G. Jordan and J. D. Mollon, “Unique hues in heterozygotes for protan and deutan deficiencies,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 67–76.

Neitz, J.

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamaguchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.

Neitz, M.

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamaguchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Parry, J. W. L.

J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human and primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.

Pokorny, J.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Purves, L.

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

Roorda, A.

Rushton, W. A. H.

W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

Scholl, H. P. N.

Seger, K. R.

F. Zisman, K. R. Seger, and A. J. Adams, “Specificity evaluation of the OSCAR color vision test,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (W. Junk Publishers, 1987), pp. 173–176.

Sharpe, L. T.

Smith, V. C.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Spekreijse, H.

O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
[CrossRef]

Usui, T.

Uvijls, A.

G. Verriest and A. Uvijls, “Results of the OSCAR test in groups of normal and abnormal subjects,” in Colour Vision Deficiencies IX, B. Drum and G. Verriest, eds. (Kluwer Academic, 1988), pp. 479–485.

Van Dalen, J. T. W.

O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
[CrossRef]

Verduyn Lunel, H. F. E.

O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
[CrossRef]

Verriest, G.

G. Verriest and A. Uvijls, “Results of the OSCAR test in groups of normal and abnormal subjects,” in Colour Vision Deficiencies IX, B. Drum and G. Verriest, eds. (Kluwer Academic, 1988), pp. 479–485.

Vingrys, A. J.

A. B. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

Werner, J. S.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Williams, D. R.

Yamaguchi, Y.

Zisman, F.

F. Zisman, K. R. Seger, and A. J. Adams, “Specificity evaluation of the OSCAR color vision test,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (W. Junk Publishers, 1987), pp. 173–176.

Am. J. Optom. Physiol. Opt. (1)

O. Estévez, H. Spekreijse, J. T. W. Van Dalen, and H. F. E. Verduyn Lunel, “The OSCAR color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiol. Opt. 60, 892–901 (1983).
[CrossRef]

Clin. Exp. Optom. (2)

A. B. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

R. W. Harris and B. L. Cole, “Diagnosing protan heterozygosity using the Medmont C-100 colour vision test,” Clin. Exp. Optom. 88, 240–247 (2005).
[CrossRef]

Clin. Genet. (1)

S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
[CrossRef]

Die Farbe (1)

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Die Farbe 34, 59–66 (1987).

Genetica (1)

Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1949).
[CrossRef]

J. Neurosci. (1)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vis. (1)

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
[CrossRef]

Vis. Neurosci. (1)

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

Vis. Res. (6)

W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vis. Res. 42, 1367–1378 (2002).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res., 78, 26–38 (2013).
[CrossRef]

Other (7)

F. Zisman, K. R. Seger, and A. J. Adams, “Specificity evaluation of the OSCAR color vision test,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (W. Junk Publishers, 1987), pp. 173–176.

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: population results for a clinical test,” J. Opt. Soc. Am. A. (submitted).

G. Verriest and A. Uvijls, “Results of the OSCAR test in groups of normal and abnormal subjects,” in Colour Vision Deficiencies IX, B. Drum and G. Verriest, eds. (Kluwer Academic, 1988), pp. 479–485.

G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 385–392.

G. Jordan and J. D. Mollon, “Unique hues in heterozygotes for protan and deutan deficiencies,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 67–76.

J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human and primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Average settings on OSCAR and Medmont C100 for 102 participants. (a) Correlation between mean OSCAR test settings and mean Medmont C100 test settings. Color-deficient observers are represented by squares and are solid for a protan deficiency and open for a deutan deficiency. Color-normal observers are represented by closed circles. (b) Frequency distribution of average Medmont C100 setting. (c) Frequency distribution of average OSCAR test setting.

Fig. 2.
Fig. 2.

Rayleigh match midpoints and matching ranges (horizontal bars) for 102 participants. Male and female observers are represented by open and closed symbols, respectively. Observers with protan deficiencies are represented by triangles, those with deutan deficiencies by squares, and those with normal color vision by circles.

Tables (1)

Tables Icon

Table 1. Hierarchical Multiple Regression Analyses Showing the Proportion of Variance Attributable to Age, Experimenter, and Rayleigh Match for Each of the OSCAR and Medmont Tests

Metrics