Abstract

Many forms of color adaptation have been found to reflect both short- and long-term adjustments. We explored the buildup and decay of adaptation to chromatic contrast (temporal modulations of color) for which the dynamics are unknown. A matching task was used to track the perceived contrast of chromatic pulses of varying physical contrast during and after adapting for 1 h to a high contrast modulation repeated over five successive days. The adaptation was characterized by rapid response changes that remained stable in both time course and form across sessions. There was no consistent evidence for long-term plasticity over the time scales we tested.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Webster, “Adaptation and visual coding,” J. Vis. 11(5), 3 (2011).
    [CrossRef]
  2. B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
    [CrossRef]
  3. A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
    [CrossRef]
  4. C. McCollough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 1115–1116 (1965).
    [CrossRef]
  5. C. McCollough-Howard and M. A. Webster, “McCollough effect,” Scholarpedia 6(2), 8175 (2011).
  6. E. Vul, E. Krizay, and D. I. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vis. 8(12), 4 (2008).
    [CrossRef]
  7. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
    [CrossRef]
  8. S. C. Belmore and S. K. Shevell, “Very-long-term chromatic adaptation: test of gain theory and a new method,” Vis. Neurosci. 25, 411–414 (2008).
    [CrossRef]
  9. S. C. Belmore and S. K. Shevell, “Very-long-term and short-term chromatic adaptation: are their influences cumulative?” Vis. Res. 51, 362–366 (2011).
    [CrossRef]
  10. P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
    [CrossRef]
  11. T. Kitakawa, S. Nakadomari, I. Kuriki, and K. Kitahara, “Evaluation of early state of cyanopsia with subjective color settings immediately after cataract removal surgery,” J. Opt. Soc. Am. A 26, 1375–1381 (2009).
    [CrossRef]
  12. M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).
  13. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
    [CrossRef]
  14. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef]
  15. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
    [CrossRef]
  16. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  17. A. Bradley, E. Switkes, and K. de Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
    [CrossRef]
  18. C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).
  19. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
    [CrossRef]
  20. M. A. Webster and G. Malkoc, “Color-luminance relationships and the McCollough effect,” Percept. Psychophys. 62, 659–672 (2000).
  21. S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
    [CrossRef]
  22. M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
    [CrossRef]
  23. S. Magnussen and T. Johnsen, “Temporal aspects of spatial adaptation. A study of the tilt aftereffect,” Vis. Res. 26, 661–672 (1986).
    [CrossRef]
  24. P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
    [CrossRef]
  25. M. Bao and S. A. Engel, “Distinct mechanism for long-term contrast adaptation,” Proc. Natl. Acad. Sci. USA 109, 5898–5903 (2012).
  26. J. Mesik, M. Bao, and S. A. Engel, “Spontaneous recovery of motion and face aftereffects,” Vis. Res. 89, 72–78 (2013).
    [CrossRef]
  27. M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
    [CrossRef]
  28. K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).
  29. I. Juricevic and M. A. Webster, “Variations in normal color vision. V. Simulations of adaptation to natural color environments,” Vis. Neurosci. 26, 133–145 (2009).
    [CrossRef]
  30. M. A. Webster, I. Juricevic, and K. C. McDermott, “Simulations of adaptation and color appearance in observers with varying spectral sensitivity,” Ophthalmic Physiol. Opt. 30, 602–610 (2010).
    [CrossRef]
  31. M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).
  32. O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
    [CrossRef]
  33. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
    [CrossRef]
  34. J. Broerse, T. Vladusich, and R. P. O’Shea, “Colour at edges and colour spreading in McCollough effects,” Vis. Res. 39, 1305–1320 (1999).
    [CrossRef]
  35. K. P. Kording, J. B. Tenenbaum, and R. Shadmehr, “The dynamics of memory as a consequence of optimal adaptation to a changing body,” Nat. Neurosci. 10, 779–786 (2007).
    [CrossRef]
  36. R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in motor control,” Annu. Rev. Neurosci. 33, 89–108 (2010).
    [CrossRef]
  37. B. Wark, A. Fairhall, and F. Rieke, “Timescales of inference in visual adaptation,” Neuron 61, 750–761 (2009).
    [CrossRef]
  38. M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007).
    [CrossRef]
  39. T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colours,” Network 12, 395–407 (2001).

2013 (1)

J. Mesik, M. Bao, and S. A. Engel, “Spontaneous recovery of motion and face aftereffects,” Vis. Res. 89, 72–78 (2013).
[CrossRef]

2012 (1)

M. Bao and S. A. Engel, “Distinct mechanism for long-term contrast adaptation,” Proc. Natl. Acad. Sci. USA 109, 5898–5903 (2012).

2011 (3)

M. A. Webster, “Adaptation and visual coding,” J. Vis. 11(5), 3 (2011).
[CrossRef]

C. McCollough-Howard and M. A. Webster, “McCollough effect,” Scholarpedia 6(2), 8175 (2011).

S. C. Belmore and S. K. Shevell, “Very-long-term and short-term chromatic adaptation: are their influences cumulative?” Vis. Res. 51, 362–366 (2011).
[CrossRef]

2010 (3)

M. A. Webster, I. Juricevic, and K. C. McDermott, “Simulations of adaptation and color appearance in observers with varying spectral sensitivity,” Ophthalmic Physiol. Opt. 30, 602–610 (2010).
[CrossRef]

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in motor control,” Annu. Rev. Neurosci. 33, 89–108 (2010).
[CrossRef]

2009 (5)

B. Wark, A. Fairhall, and F. Rieke, “Timescales of inference in visual adaptation,” Neuron 61, 750–761 (2009).
[CrossRef]

I. Juricevic and M. A. Webster, “Variations in normal color vision. V. Simulations of adaptation to natural color environments,” Vis. Neurosci. 26, 133–145 (2009).
[CrossRef]

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

T. Kitakawa, S. Nakadomari, I. Kuriki, and K. Kitahara, “Evaluation of early state of cyanopsia with subjective color settings immediately after cataract removal surgery,” J. Opt. Soc. Am. A 26, 1375–1381 (2009).
[CrossRef]

2008 (4)

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

S. C. Belmore and S. K. Shevell, “Very-long-term chromatic adaptation: test of gain theory and a new method,” Vis. Neurosci. 25, 411–414 (2008).
[CrossRef]

E. Vul, E. Krizay, and D. I. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vis. 8(12), 4 (2008).
[CrossRef]

K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).

2007 (4)

K. P. Kording, J. B. Tenenbaum, and R. Shadmehr, “The dynamics of memory as a consequence of optimal adaptation to a changing body,” Nat. Neurosci. 10, 779–786 (2007).
[CrossRef]

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007).
[CrossRef]

2004 (1)

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

2003 (1)

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

2002 (1)

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

2001 (1)

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colours,” Network 12, 395–407 (2001).

2000 (3)

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster and G. Malkoc, “Color-luminance relationships and the McCollough effect,” Percept. Psychophys. 62, 659–672 (2000).

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

1999 (1)

J. Broerse, T. Vladusich, and R. P. O’Shea, “Colour at edges and colour spreading in McCollough effects,” Vis. Res. 39, 1305–1320 (1999).
[CrossRef]

1996 (1)

M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).

1994 (1)

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

1991 (2)

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[CrossRef]

1988 (1)

A. Bradley, E. Switkes, and K. de Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

1986 (1)

S. Magnussen and T. Johnsen, “Temporal aspects of spatial adaptation. A study of the tilt aftereffect,” Vis. Res. 26, 661–672 (1986).
[CrossRef]

1985 (2)

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[CrossRef]

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1965 (1)

C. McCollough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 1115–1116 (1965).
[CrossRef]

Bao, M.

J. Mesik, M. Bao, and S. A. Engel, “Spontaneous recovery of motion and face aftereffects,” Vis. Res. 89, 72–78 (2013).
[CrossRef]

M. Bao and S. A. Engel, “Distinct mechanism for long-term contrast adaptation,” Proc. Natl. Acad. Sci. USA 109, 5898–5903 (2012).

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Bebis, G.

K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).

Belkin, M.

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

Belmore, S. C.

S. C. Belmore and S. K. Shevell, “Very-long-term and short-term chromatic adaptation: are their influences cumulative?” Vis. Res. 51, 362–366 (2011).
[CrossRef]

S. C. Belmore and S. K. Shevell, “Very-long-term chromatic adaptation: test of gain theory and a new method,” Vis. Neurosci. 25, 411–414 (2008).
[CrossRef]

Bradley, A.

A. Bradley, E. Switkes, and K. de Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

Broerse, J.

J. Broerse, T. Vladusich, and R. P. O’Shea, “Colour at edges and colour spreading in McCollough effects,” Vis. Res. 39, 1305–1320 (1999).
[CrossRef]

Carroll, J.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Cheong, A. M.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

Clifford, C. W.

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

de Valois, K.

A. Bradley, E. Switkes, and K. de Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

Delahunt, P. B.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

Engel, S. A.

J. Mesik, M. Bao, and S. A. Engel, “Spontaneous recovery of motion and face aftereffects,” Vis. Res. 89, 72–78 (2013).
[CrossRef]

M. Bao and S. A. Engel, “Distinct mechanism for long-term contrast adaptation,” Proc. Natl. Acad. Sci. USA 109, 5898–5903 (2012).

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Fairhall, A.

B. Wark, A. Fairhall, and F. Rieke, “Timescales of inference in visual adaptation,” Neuron 61, 750–761 (2009).
[CrossRef]

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

Fang, F.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

Georgeson, M. A.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[CrossRef]

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).

Greenlee, M. W.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[CrossRef]

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[CrossRef]

Harris, J. P.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[CrossRef]

He, S.

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Johnsen, T.

S. Magnussen and T. Johnsen, “Temporal aspects of spatial adaptation. A study of the tilt aftereffect,” Vis. Res. 26, 661–672 (1986).
[CrossRef]

Juricevic, I.

M. A. Webster, I. Juricevic, and K. C. McDermott, “Simulations of adaptation and color appearance in observers with varying spectral sensitivity,” Ophthalmic Physiol. Opt. 30, 602–610 (2010).
[CrossRef]

I. Juricevic and M. A. Webster, “Variations in normal color vision. V. Simulations of adaptation to natural color environments,” Vis. Neurosci. 26, 133–145 (2009).
[CrossRef]

K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).

Kitahara, K.

Kitakawa, T.

Kohn, A.

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

Kording, K. P.

K. P. Kording, J. B. Tenenbaum, and R. Shadmehr, “The dynamics of memory as a consequence of optimal adaptation to a changing body,” Nat. Neurosci. 10, 779–786 (2007).
[CrossRef]

Krakauer, J. W.

R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in motor control,” Annu. Rev. Neurosci. 33, 89–108 (2010).
[CrossRef]

Krauskopf, J.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Krizay, E.

E. Vul, E. Krizay, and D. I. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vis. 8(12), 4 (2008).
[CrossRef]

Kuriki, I.

Kwon, M.

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

Legge, G. E.

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

Leonard, D.

Lundstrom, B. N.

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

Ma, L.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

MacLeod, D. I.

E. Vul, E. Krizay, and D. I. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vis. 8(12), 4 (2008).
[CrossRef]

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colours,” Network 12, 395–407 (2001).

Magnussen, S.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[CrossRef]

S. Magnussen and T. Johnsen, “Temporal aspects of spatial adaptation. A study of the tilt aftereffect,” Vis. Res. 26, 661–672 (1986).
[CrossRef]

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[CrossRef]

Malkoc, G.

M. A. Webster and G. Malkoc, “Color-luminance relationships and the McCollough effect,” Percept. Psychophys. 62, 659–672 (2000).

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

Martin, P. R.

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

McCollough, C.

C. McCollough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 1115–1116 (1965).
[CrossRef]

McCollough-Howard, C.

C. McCollough-Howard and M. A. Webster, “McCollough effect,” Scholarpedia 6(2), 8175 (2011).

McDermott, K.

K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).

McDermott, K. C.

M. A. Webster, I. Juricevic, and K. C. McDermott, “Simulations of adaptation and color appearance in observers with varying spectral sensitivity,” Ophthalmic Physiol. Opt. 30, 602–610 (2010).
[CrossRef]

Mesik, J.

J. Mesik, M. Bao, and S. A. Engel, “Spontaneous recovery of motion and face aftereffects,” Vis. Res. 89, 72–78 (2013).
[CrossRef]

Miyahara, E.

Mizokami, Y.

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007).
[CrossRef]

Mollon, J. D.

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Nakadomari, S.

Neitz, J.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Neitz, M.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

O’Shea, R. P.

J. Broerse, T. Vladusich, and R. P. O’Shea, “Colour at edges and colour spreading in McCollough effects,” Vis. Res. 39, 1305–1320 (1999).
[CrossRef]

Polat, U.

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

Raker, V. E.

Rieke, F.

B. Wark, A. Fairhall, and F. Rieke, “Timescales of inference in visual adaptation,” Neuron 61, 750–761 (2009).
[CrossRef]

Sagi, D.

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

Shadmehr, R.

R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in motor control,” Annu. Rev. Neurosci. 33, 89–108 (2010).
[CrossRef]

K. P. Kording, J. B. Tenenbaum, and R. Shadmehr, “The dynamics of memory as a consequence of optimal adaptation to a changing body,” Nat. Neurosci. 10, 779–786 (2007).
[CrossRef]

Shevell, S. K.

S. C. Belmore and S. K. Shevell, “Very-long-term and short-term chromatic adaptation: are their influences cumulative?” Vis. Res. 51, 362–366 (2011).
[CrossRef]

S. C. Belmore and S. K. Shevell, “Very-long-term chromatic adaptation: test of gain theory and a new method,” Vis. Neurosci. 25, 411–414 (2008).
[CrossRef]

Smith, M. A.

R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in motor control,” Annu. Rev. Neurosci. 33, 89–108 (2010).
[CrossRef]

Solomon, S. G.

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

Spehar, B.

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

Sterkin, A.

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

Switkes, E.

A. Bradley, E. Switkes, and K. de Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

Tenenbaum, J. B.

K. P. Kording, J. B. Tenenbaum, and R. Shadmehr, “The dynamics of memory as a consequence of optimal adaptation to a changing body,” Nat. Neurosci. 10, 779–786 (2007).
[CrossRef]

Vladusich, T.

J. Broerse, T. Vladusich, and R. P. O’Shea, “Colour at edges and colour spreading in McCollough effects,” Vis. Res. 39, 1305–1320 (1999).
[CrossRef]

von der Twer, T.

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colours,” Network 12, 395–407 (2001).

Vul, E.

E. Vul, E. Krizay, and D. I. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vis. 8(12), 4 (2008).
[CrossRef]

Wark, B.

B. Wark, A. Fairhall, and F. Rieke, “Timescales of inference in visual adaptation,” Neuron 61, 750–761 (2009).
[CrossRef]

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

Webster, M. A.

M. A. Webster, “Adaptation and visual coding,” J. Vis. 11(5), 3 (2011).
[CrossRef]

C. McCollough-Howard and M. A. Webster, “McCollough effect,” Scholarpedia 6(2), 8175 (2011).

M. A. Webster, I. Juricevic, and K. C. McDermott, “Simulations of adaptation and color appearance in observers with varying spectral sensitivity,” Ophthalmic Physiol. Opt. 30, 602–610 (2010).
[CrossRef]

I. Juricevic and M. A. Webster, “Variations in normal color vision. V. Simulations of adaptation to natural color environments,” Vis. Neurosci. 26, 133–145 (2009).
[CrossRef]

K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007).
[CrossRef]

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

M. A. Webster and G. Malkoc, “Color-luminance relationships and the McCollough effect,” Percept. Psychophys. 62, 659–672 (2000).

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Webster, S. M.

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007).
[CrossRef]

Werner, J. S.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

Williams, D. R.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wilson, J. A.

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

Yamauchi, Y.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Yehezkel, O.

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

Zaidi, Q.

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

Zhang, P.

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Annu. Rev. Neurosci. (1)

R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in motor control,” Annu. Rev. Neurosci. 33, 89–108 (2010).
[CrossRef]

Curr. Biol. (1)

P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009).
[CrossRef]

Curr. Opin. Neurobiol. (1)

B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007).
[CrossRef]

J. Neurophysiol. (1)

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Vis. (4)

M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9(2), 20 (2009).
[CrossRef]

C. W. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation,” J. Vis. 3(2), 1 (2003).

M. A. Webster, “Adaptation and visual coding,” J. Vis. 11(5), 3 (2011).
[CrossRef]

E. Vul, E. Krizay, and D. I. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vis. 8(12), 4 (2008).
[CrossRef]

Nat. Neurosci. (1)

K. P. Kording, J. B. Tenenbaum, and R. Shadmehr, “The dynamics of memory as a consequence of optimal adaptation to a changing body,” Nat. Neurosci. 10, 779–786 (2007).
[CrossRef]

Nature (1)

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Netw. Comput. Neural Syst. (1)

M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996).

Network (2)

M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007).
[CrossRef]

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colours,” Network 12, 395–407 (2001).

Neuron (2)

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

B. Wark, A. Fairhall, and F. Rieke, “Timescales of inference in visual adaptation,” Neuron 61, 750–761 (2009).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

M. A. Webster, I. Juricevic, and K. C. McDermott, “Simulations of adaptation and color appearance in observers with varying spectral sensitivity,” Ophthalmic Physiol. Opt. 30, 602–610 (2010).
[CrossRef]

Percept. Psychophys. (1)

M. A. Webster and G. Malkoc, “Color-luminance relationships and the McCollough effect,” Percept. Psychophys. 62, 659–672 (2000).

Proc. Natl. Acad. Sci. USA (1)

M. Bao and S. A. Engel, “Distinct mechanism for long-term contrast adaptation,” Proc. Natl. Acad. Sci. USA 109, 5898–5903 (2012).

Proc. SPIE (1)

K. McDermott, I. Juricevic, G. Bebis, and M. A. Webster, “Adapting images to observers,” Proc. SPIE 6806, 68060V (2008).

Scholarpedia (1)

C. McCollough-Howard and M. A. Webster, “McCollough effect,” Scholarpedia 6(2), 8175 (2011).

Science (1)

C. McCollough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 1115–1116 (1965).
[CrossRef]

Spatial Vis. (1)

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).

Vis. Neurosci. (3)

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

I. Juricevic and M. A. Webster, “Variations in normal color vision. V. Simulations of adaptation to natural color environments,” Vis. Neurosci. 26, 133–145 (2009).
[CrossRef]

S. C. Belmore and S. K. Shevell, “Very-long-term chromatic adaptation: test of gain theory and a new method,” Vis. Neurosci. 25, 411–414 (2008).
[CrossRef]

Vis. Res. (11)

S. C. Belmore and S. K. Shevell, “Very-long-term and short-term chromatic adaptation: are their influences cumulative?” Vis. Res. 51, 362–366 (2011).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

A. Bradley, E. Switkes, and K. de Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988).
[CrossRef]

J. Mesik, M. Bao, and S. A. Engel, “Spontaneous recovery of motion and face aftereffects,” Vis. Res. 89, 72–78 (2013).
[CrossRef]

S. Magnussen and M. W. Greenlee, “Marathon adaptation to spatial contrast: saturation in sight,” Vis. Res. 25, 1409–1411 (1985).
[CrossRef]

M. W. Greenlee, M. A. Georgeson, S. Magnussen, and J. P. Harris, “The time course of adaptation to spatial contrast,” Vis. Res. 31, 223–236 (1991).
[CrossRef]

S. Magnussen and T. Johnsen, “Temporal aspects of spatial adaptation. A study of the tilt aftereffect,” Vis. Res. 26, 661–672 (1986).
[CrossRef]

O. Yehezkel, D. Sagi, A. Sterkin, M. Belkin, and U. Polat, “Learning to adapt: Dynamics of readaptation to geometrical distortions,” Vis. Res. 50, 1550–1558 (2010).
[CrossRef]

J. Broerse, T. Vladusich, and R. P. O’Shea, “Colour at edges and colour spreading in McCollough effects,” Vis. Res. 39, 1305–1320 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Contrast matches during the daily adapting sessions. Panels show the settings for four individual observers, and plot the matches to each of the three test contrasts (20, 40, or 80) either before (pre), during (adapt), or after (post) exposure to the adapting stimulus. Different color traces correspond to repeated settings over 5 days: day 1 (red); day 2 (green); day 3 (blue); day 4 (pink); day 5 (black).

Fig. 2.
Fig. 2.

Examples of exponential fits (black lines) to the contrast matches (gray traces) for KT (top) or MW (bottom). Separate exponentials were fit to the pre, post, and adapt phases. These characterized the changes in perceived contrast for most observers (like KT), but do not approximate the dynamics during adaptation for MW.

Fig. 3.
Fig. 3.

Mean contrast matches (across observers) ±1 SE either at the end of the pre-adapt phase (left) or at the end of the post-adapt phase (right). The three sets of symbols correspond to the test contrasts of 20, 40, or 80 measured over the five sessions. Matches returned to a physical match by the end of the post-adapt phase and showed no carryover of aftereffects at the beginning of the next daily session.

Fig. 4.
Fig. 4.

Time constants for the perceived contrast changes for the five daily sessions, either during the adaptation period (left) or during the post-adapt recovery period (right). Symbols plot the mean time constants across observers ±1 SE, for test contrasts of 20 (circle), 40 (plus), or 80 (triangle).

Fig. 5.
Fig. 5.

Mean time constants (across observers and sessions) ±1 SE for the post-adapt phase (left), and mean minimum contrast matches (across observers and sessions) ±1 SE during the adapt phase (right), each for test contrasts of 20 (circle), 40 (plus), or 80 (triangle).

Fig. 6.
Fig. 6.

Matching contrast during adaptation as a function of the test contrast. Each panel plots the settings for a different observer. Lines show the perceived contrast at six successive times sampled at 10 min intervals. Time 1 (red); time 2 (green); time 3 (blue); time 4 (purple); time 5 (cyan); time 6 (black).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LvsM contrast=(l0.6568)*2754,
SvsLM contrast=(s0.01825)*4099.
Csec=Cmax+(CminCmax)(1e((sec/τ))),

Metrics