Abstract

In simultaneous brightness contrast (SBC) demonstrations, identical mid-luminance disks appear different from each other when one is placed on a black background while the other is placed on a white background. The strength of SBC effects can be enhanced by placing a semi-transparent layer on top of the display (Meyer’s effect). Here, we try to separate the causes of Meyer’s effect by placing a spatially homogenous transparent layer over a standard SBC display, and systematically varying the transmission level (alpha=0, clear; alpha=1, opaque) and color (black, gray, white) of the semi-transparent layer. Spatially homogenous transparent layers, which lack spatial cues, cannot be unambiguously interpreted as transparent fields. We measure SBC strength with both matching and ranking procedures. Paradoxically, with black layers, increasing alpha level weakens SBC when measured with a ranking procedure (no Meyer’s effect) and strengthens SBC when measured with a matching procedure (Meyer’s effect). With white and gray layers, neither procedure produces Meyer’s effect. We account for the differences between white and black layers by positing that the visual system separates luminance from contrast. The results suggest that observers attend to different information in the matching and ranking procedures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neuroscience, M. Gazzaniga, ed., 2nd ed. (MIT, 2000), pp. 339–351.
  2. B. Blakeslee, W. Pasieka, M. E. McCourt, “Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast,” Vis. Res. 45, 607–615 (2005).
    [CrossRef]
  3. F. Kingdom, “Simultaneous contrast: the legacies of Hering and Helmholtz,” Perception 26, 493–506 (1997).
    [CrossRef]
  4. B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
    [CrossRef]
  5. Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
    [CrossRef]
  6. H. Meyer, “Uber Kontrast -und Komplementarfarben,” Annalen der Physik, XCV, 170–171 (1855).
    [CrossRef]
  7. E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflugers Archiv fur Physiologie 41, 1–29 (1887).
    [CrossRef]
  8. J. Kohler, “Der simultane Farben- und Helligkeitskontrast, mit besonder Berucksichtigung des sog. Florkontrastes,” Archiv fur die gesamte Psychologie 2, 1531–1540 (1904).
  9. E. C. Hildreth, Lectures on Visual Psychology (Professional, 1949).
  10. G. L. Walls, “Land! Land!” Psychol. Bull. 57, 29–48 (1960).
    [CrossRef]
  11. R. O. Brown, “Backgrounds and illuminants: the yin and yang of colour constancy,” in Colour Perception, R. Mausfeld, D. Heyer, eds. (Oxford University, 2003), pp. 247–272.
  12. R. Mausfeld, “Colour as part of the format of different perceptual primitives: the dual coding of color,” in Colour PerceptionR. Mausfeld, D. Heyer, eds (Oxford University, 2003), pp. 381–429.
  13. V. Ekroll, F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25, 107–141 (2012).
    [CrossRef]
  14. H. H. von Helmholtz, J. Southall, translators, Physiological Optics (Optical Society of America, 1924) (Original work published in 1867).
  15. E. C. Sanford, “A laboratory course in physiological psychology,” Am. J. Psychol. 5, 390–415 (1893).
    [CrossRef]
  16. B. Anderson, J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
    [CrossRef]
  17. B. L. Anderson, J. Winawer, “Layered image representations and the computation of surface lightness,” J. Vis. 8(7):18 (2007).
    [CrossRef]
  18. M. K. Albert, “Mechanisms of modal and amodal interpolation,” Psychol. Rev. 114, 455–468 (2007).
    [CrossRef]
  19. F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
    [CrossRef]
  20. B. L. Anderson, M. Singh, R. W. Fleming, “The interpolation of object and surface structure,” Cognitive Psychol. 44, 148–190 (2002).
  21. B. L. Anderson, “Stereoscopic surface perception,” Neuron 24, 919–928 (1999).
    [CrossRef]
  22. L. Wittgenstein, Remarks on Colour, G. E. M. Anscombe, ed., translated by L. L. McAlister and M. Schättle (Blackwell, 1977).
  23. A. Shapiro, Z.-L. Lu, “Relative brightness in natural images can be accounted for by removing blurry content,” Psychol. Sci. 22, 1452–1459 (2011).
  24. E. L. Dixon, A. G. Shapiro, Z.-L. Lu, “Scale-invariance in brightness illusions implicates object-level visual processing,” submitted to Sci. Rep.
  25. A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1), 8 (2008).
    [CrossRef]
  26. D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
    [CrossRef]
  27. S. C. Dakin, P. J. Bex, “Natural image statistics mediate brightness ‘filling in’,” P. R. Soc. Lond. Ser. B 270, 2341–2348 (2003).
    [CrossRef]
  28. A. L. Gilchrist, A. Radonjić, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
    [CrossRef]
  29. B. Blakeslee, M. E. McCourt, “When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component,” Vis. Res. 60, 40–50 (2012).
    [CrossRef]
  30. A. E. Robinson, V. R. De Sa, “Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion,” Vis. Res. 48, 2370–2381 (2008).
    [CrossRef]
  31. A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
    [CrossRef]
  32. T. Vladusich, M. P. Lucassen, F. W. Cornelissen, “Do cortical neurons process luminance or contrast to encode surface properties?” J. Neurophysiol. 95, 2638–2649 (2005).
    [CrossRef]
  33. P. Whittle, “The psychophysics of contrast brightness,” in Lightness, Brightness, and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum, 1994), pp. 35–110.
  34. A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed-accuracy tradeoff method,” Vis. Res. 35, 2825–2843 (1995).
    [CrossRef]
  35. L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast; 2. reflectance variation,” Percept. Psychophys. 54, 457–468 (1993).
    [CrossRef]
  36. L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
    [CrossRef]

2012 (2)

V. Ekroll, F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

B. Blakeslee, M. E. McCourt, “When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component,” Vis. Res. 60, 40–50 (2012).
[CrossRef]

2011 (2)

F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

A. Shapiro, Z.-L. Lu, “Relative brightness in natural images can be accounted for by removing blurry content,” Psychol. Sci. 22, 1452–1459 (2011).

2010 (1)

A. L. Gilchrist, A. Radonjić, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

2008 (2)

A. E. Robinson, V. R. De Sa, “Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion,” Vis. Res. 48, 2370–2381 (2008).
[CrossRef]

A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1), 8 (2008).
[CrossRef]

2007 (2)

B. L. Anderson, J. Winawer, “Layered image representations and the computation of surface lightness,” J. Vis. 8(7):18 (2007).
[CrossRef]

M. K. Albert, “Mechanisms of modal and amodal interpolation,” Psychol. Rev. 114, 455–468 (2007).
[CrossRef]

2005 (3)

B. Anderson, J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

B. Blakeslee, W. Pasieka, M. E. McCourt, “Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast,” Vis. Res. 45, 607–615 (2005).
[CrossRef]

T. Vladusich, M. P. Lucassen, F. W. Cornelissen, “Do cortical neurons process luminance or contrast to encode surface properties?” J. Neurophysiol. 95, 2638–2649 (2005).
[CrossRef]

2004 (2)

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
[CrossRef]

2003 (1)

S. C. Dakin, P. J. Bex, “Natural image statistics mediate brightness ‘filling in’,” P. R. Soc. Lond. Ser. B 270, 2341–2348 (2003).
[CrossRef]

2002 (1)

B. L. Anderson, M. Singh, R. W. Fleming, “The interpolation of object and surface structure,” Cognitive Psychol. 44, 148–190 (2002).

1999 (2)

B. L. Anderson, “Stereoscopic surface perception,” Neuron 24, 919–928 (1999).
[CrossRef]

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

1997 (1)

F. Kingdom, “Simultaneous contrast: the legacies of Hering and Helmholtz,” Perception 26, 493–506 (1997).
[CrossRef]

1995 (1)

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed-accuracy tradeoff method,” Vis. Res. 35, 2825–2843 (1995).
[CrossRef]

1993 (2)

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast; 2. reflectance variation,” Percept. Psychophys. 54, 457–468 (1993).
[CrossRef]

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef]

1992 (1)

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

1960 (1)

G. L. Walls, “Land! Land!” Psychol. Bull. 57, 29–48 (1960).
[CrossRef]

1904 (1)

J. Kohler, “Der simultane Farben- und Helligkeitskontrast, mit besonder Berucksichtigung des sog. Florkontrastes,” Archiv fur die gesamte Psychologie 2, 1531–1540 (1904).

1893 (1)

E. C. Sanford, “A laboratory course in physiological psychology,” Am. J. Psychol. 5, 390–415 (1893).
[CrossRef]

1887 (1)

E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflugers Archiv fur Physiologie 41, 1–29 (1887).
[CrossRef]

1855 (1)

H. Meyer, “Uber Kontrast -und Komplementarfarben,” Annalen der Physik, XCV, 170–171 (1855).
[CrossRef]

Adelson, E. H.

E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neuroscience, M. Gazzaniga, ed., 2nd ed. (MIT, 2000), pp. 339–351.

Albert, M. K.

M. K. Albert, “Mechanisms of modal and amodal interpolation,” Psychol. Rev. 114, 455–468 (2007).
[CrossRef]

Anderson, B.

B. Anderson, J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

Anderson, B. L.

B. L. Anderson, J. Winawer, “Layered image representations and the computation of surface lightness,” J. Vis. 8(7):18 (2007).
[CrossRef]

B. L. Anderson, M. Singh, R. W. Fleming, “The interpolation of object and surface structure,” Cognitive Psychol. 44, 148–190 (2002).

B. L. Anderson, “Stereoscopic surface perception,” Neuron 24, 919–928 (1999).
[CrossRef]

Antona, A. D. D.

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

Arend, L. E.

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast; 2. reflectance variation,” Percept. Psychophys. 54, 457–468 (1993).
[CrossRef]

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef]

Belano, L. A.

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

Bex, P. J.

S. C. Dakin, P. J. Bex, “Natural image statistics mediate brightness ‘filling in’,” P. R. Soc. Lond. Ser. B 270, 2341–2348 (2003).
[CrossRef]

Blakeslee, B.

B. Blakeslee, M. E. McCourt, “When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component,” Vis. Res. 60, 40–50 (2012).
[CrossRef]

B. Blakeslee, W. Pasieka, M. E. McCourt, “Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast,” Vis. Res. 45, 607–615 (2005).
[CrossRef]

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

Brown, R. O.

R. O. Brown, “Backgrounds and illuminants: the yin and yang of colour constancy,” in Colour Perception, R. Mausfeld, D. Heyer, eds. (Oxford University, 2003), pp. 247–272.

Canova, A.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Charles, J. P.

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

Cornelissen, F. W.

T. Vladusich, M. P. Lucassen, F. W. Cornelissen, “Do cortical neurons process luminance or contrast to encode surface properties?” J. Neurophysiol. 95, 2638–2649 (2005).
[CrossRef]

Dakin, S. C.

S. C. Dakin, P. J. Bex, “Natural image statistics mediate brightness ‘filling in’,” P. R. Soc. Lond. Ser. B 270, 2341–2348 (2003).
[CrossRef]

De Sa, V. R.

A. E. Robinson, V. R. De Sa, “Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion,” Vis. Res. 48, 2370–2381 (2008).
[CrossRef]

Dixon, E. L.

E. L. Dixon, A. G. Shapiro, Z.-L. Lu, “Scale-invariance in brightness illusions implicates object-level visual processing,” submitted to Sci. Rep.

Ekroll, V.

V. Ekroll, F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

Faul, F.

V. Ekroll, F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

Flanigan, N.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Fleming, R. W.

B. L. Anderson, M. Singh, R. W. Fleming, “The interpolation of object and surface structure,” Cognitive Psychol. 44, 148–190 (2002).

Gilchrist, A. L.

A. L. Gilchrist, A. Radonjić, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

Graham, N.

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed-accuracy tradeoff method,” Vis. Res. 35, 2825–2843 (1995).
[CrossRef]

Hering, E.

E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflugers Archiv fur Physiologie 41, 1–29 (1887).
[CrossRef]

Hildreth, E. C.

E. C. Hildreth, Lectures on Visual Psychology (Professional, 1949).

Kingdom, F.

F. Kingdom, “Simultaneous contrast: the legacies of Hering and Helmholtz,” Perception 26, 493–506 (1997).
[CrossRef]

Kingdom, F. A. A.

F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

Kohler, J.

J. Kohler, “Der simultane Farben- und Helligkeitskontrast, mit besonder Berucksichtigung des sog. Florkontrastes,” Archiv fur die gesamte Psychologie 2, 1531–1540 (1904).

Lotto, R. B.

D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
[CrossRef]

Lu, Z.-L.

A. Shapiro, Z.-L. Lu, “Relative brightness in natural images can be accounted for by removing blurry content,” Psychol. Sci. 22, 1452–1459 (2011).

E. L. Dixon, A. G. Shapiro, Z.-L. Lu, “Scale-invariance in brightness illusions implicates object-level visual processing,” submitted to Sci. Rep.

Lucassen, M. P.

T. Vladusich, M. P. Lucassen, F. W. Cornelissen, “Do cortical neurons process luminance or contrast to encode surface properties?” J. Neurophysiol. 95, 2638–2649 (2005).
[CrossRef]

Mausfeld, R.

R. Mausfeld, “Colour as part of the format of different perceptual primitives: the dual coding of color,” in Colour PerceptionR. Mausfeld, D. Heyer, eds (Oxford University, 2003), pp. 381–429.

McCourt, M. E.

B. Blakeslee, M. E. McCourt, “When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component,” Vis. Res. 60, 40–50 (2012).
[CrossRef]

B. Blakeslee, W. Pasieka, M. E. McCourt, “Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast,” Vis. Res. 45, 607–615 (2005).
[CrossRef]

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

Meyer, H.

H. Meyer, “Uber Kontrast -und Komplementarfarben,” Annalen der Physik, XCV, 170–171 (1855).
[CrossRef]

Nundy, S.

D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
[CrossRef]

Pasieka, W.

B. Blakeslee, W. Pasieka, M. E. McCourt, “Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast,” Vis. Res. 45, 607–615 (2005).
[CrossRef]

Purves, D.

D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
[CrossRef]

Radonjic, A.

A. L. Gilchrist, A. Radonjić, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

Robinson, A. E.

A. E. Robinson, V. R. De Sa, “Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion,” Vis. Res. 48, 2370–2381 (2008).
[CrossRef]

Sanford, E. C.

E. C. Sanford, “A laboratory course in physiological psychology,” Am. J. Psychol. 5, 390–415 (1893).
[CrossRef]

Shapiro, A.

A. Shapiro, Z.-L. Lu, “Relative brightness in natural images can be accounted for by removing blurry content,” Psychol. Sci. 22, 1452–1459 (2011).

Shapiro, A. G.

A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1), 8 (2008).
[CrossRef]

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

E. L. Dixon, A. G. Shapiro, Z.-L. Lu, “Scale-invariance in brightness illusions implicates object-level visual processing,” submitted to Sci. Rep.

Shear-Heyman, M.

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

Singh, M.

B. L. Anderson, M. Singh, R. W. Fleming, “The interpolation of object and surface structure,” Cognitive Psychol. 44, 148–190 (2002).

Smith, J. B.

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

Spehar, B.

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef]

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast; 2. reflectance variation,” Percept. Psychophys. 54, 457–468 (1993).
[CrossRef]

Sutter, A.

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed-accuracy tradeoff method,” Vis. Res. 35, 2825–2843 (1995).
[CrossRef]

Vladusich, T.

T. Vladusich, M. P. Lucassen, F. W. Cornelissen, “Do cortical neurons process luminance or contrast to encode surface properties?” J. Neurophysiol. 95, 2638–2649 (2005).
[CrossRef]

Walls, G. L.

G. L. Walls, “Land! Land!” Psychol. Bull. 57, 29–48 (1960).
[CrossRef]

Whittle, P.

P. Whittle, “The psychophysics of contrast brightness,” in Lightness, Brightness, and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum, 1994), pp. 35–110.

Williams, S. M.

D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
[CrossRef]

Winawer, J.

B. L. Anderson, J. Winawer, “Layered image representations and the computation of surface lightness,” J. Vis. 8(7):18 (2007).
[CrossRef]

B. Anderson, J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

Wittgenstein, L.

L. Wittgenstein, Remarks on Colour, G. E. M. Anscombe, ed., translated by L. L. McAlister and M. Schättle (Blackwell, 1977).

Yoshimi, B.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Zaidi, Q.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Am. J. Psychol. (1)

E. C. Sanford, “A laboratory course in physiological psychology,” Am. J. Psychol. 5, 390–415 (1893).
[CrossRef]

Annalen der Physik (1)

H. Meyer, “Uber Kontrast -und Komplementarfarben,” Annalen der Physik, XCV, 170–171 (1855).
[CrossRef]

Archiv fur die gesamte Psychologie (1)

J. Kohler, “Der simultane Farben- und Helligkeitskontrast, mit besonder Berucksichtigung des sog. Florkontrastes,” Archiv fur die gesamte Psychologie 2, 1531–1540 (1904).

Cognitive Psychol. (1)

B. L. Anderson, M. Singh, R. W. Fleming, “The interpolation of object and surface structure,” Cognitive Psychol. 44, 148–190 (2002).

J. Neurophysiol. (1)

T. Vladusich, M. P. Lucassen, F. W. Cornelissen, “Do cortical neurons process luminance or contrast to encode surface properties?” J. Neurophysiol. 95, 2638–2649 (2005).
[CrossRef]

J. Vis. (4)

A. G. Shapiro, A. D. D. Antona, J. P. Charles, L. A. Belano, J. B. Smith, M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5 (2004).
[CrossRef]

A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1), 8 (2008).
[CrossRef]

A. L. Gilchrist, A. Radonjić, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

B. L. Anderson, J. Winawer, “Layered image representations and the computation of surface lightness,” J. Vis. 8(7):18 (2007).
[CrossRef]

Nature (1)

B. Anderson, J. Winawer, “Image segmentation and lightness perception,” Nature 434, 79–83 (2005).
[CrossRef]

Neuron (1)

B. L. Anderson, “Stereoscopic surface perception,” Neuron 24, 919–928 (1999).
[CrossRef]

P. R. Soc. Lond. Ser. B (1)

S. C. Dakin, P. J. Bex, “Natural image statistics mediate brightness ‘filling in’,” P. R. Soc. Lond. Ser. B 270, 2341–2348 (2003).
[CrossRef]

Percept. Psychophys. (2)

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast; 2. reflectance variation,” Percept. Psychophys. 54, 457–468 (1993).
[CrossRef]

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef]

Perception (1)

F. Kingdom, “Simultaneous contrast: the legacies of Hering and Helmholtz,” Perception 26, 493–506 (1997).
[CrossRef]

Pflugers Archiv fur Physiologie (1)

E. Hering, “Ueber die Theorie des simultanen Contrastes von Helmholtz: II. Der Contrastversuch von H. Meyer und die Versuche am Farbenkreisel,” Pflugers Archiv fur Physiologie 41, 1–29 (1887).
[CrossRef]

Psychol. Bull. (1)

G. L. Walls, “Land! Land!” Psychol. Bull. 57, 29–48 (1960).
[CrossRef]

Psychol. Rev. (2)

M. K. Albert, “Mechanisms of modal and amodal interpolation,” Psychol. Rev. 114, 455–468 (2007).
[CrossRef]

D. Purves, S. M. Williams, S. Nundy, R. B. Lotto, “Perceiving the intensity of light,” Psychol. Rev. 111, 142–158 (2004).
[CrossRef]

Psychol. Sci. (1)

A. Shapiro, Z.-L. Lu, “Relative brightness in natural images can be accounted for by removing blurry content,” Psychol. Sci. 22, 1452–1459 (2011).

Seeing Perceiving (1)

V. Ekroll, F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25, 107–141 (2012).
[CrossRef]

Vis. Res. (7)

F. A. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vis. Res. 39, 4361–4377 (1999).
[CrossRef]

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

B. Blakeslee, W. Pasieka, M. E. McCourt, “Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast,” Vis. Res. 45, 607–615 (2005).
[CrossRef]

B. Blakeslee, M. E. McCourt, “When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component,” Vis. Res. 60, 40–50 (2012).
[CrossRef]

A. E. Robinson, V. R. De Sa, “Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion,” Vis. Res. 48, 2370–2381 (2008).
[CrossRef]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed-accuracy tradeoff method,” Vis. Res. 35, 2825–2843 (1995).
[CrossRef]

Other (8)

P. Whittle, “The psychophysics of contrast brightness,” in Lightness, Brightness, and Transparency, A. L. Gilchrist, ed. (Lawrence Erlbaum, 1994), pp. 35–110.

E. L. Dixon, A. G. Shapiro, Z.-L. Lu, “Scale-invariance in brightness illusions implicates object-level visual processing,” submitted to Sci. Rep.

L. Wittgenstein, Remarks on Colour, G. E. M. Anscombe, ed., translated by L. L. McAlister and M. Schättle (Blackwell, 1977).

E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neuroscience, M. Gazzaniga, ed., 2nd ed. (MIT, 2000), pp. 339–351.

E. C. Hildreth, Lectures on Visual Psychology (Professional, 1949).

H. H. von Helmholtz, J. Southall, translators, Physiological Optics (Optical Society of America, 1924) (Original work published in 1867).

R. O. Brown, “Backgrounds and illuminants: the yin and yang of colour constancy,” in Colour Perception, R. Mausfeld, D. Heyer, eds. (Oxford University, 2003), pp. 247–272.

R. Mausfeld, “Colour as part of the format of different perceptual primitives: the dual coding of color,” in Colour PerceptionR. Mausfeld, D. Heyer, eds (Oxford University, 2003), pp. 381–429.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Transparent layers over SBC. The first column demonstrates the placement of transparent layers on top of traditional SBC demos (i.e., two identical test patches, one on a black background and one on a white background). The second column shows the final image construction. (a) and (b) Textured abstract multicolor layers. (c) Cloud layer, with Anderson and Winawer’s modification of a simultaneous contrast illusion as model. (d) Textureless green layer. (e) Textureless white layer.

Fig. 2.
Fig. 2.

Sample stimuli for experiment 1. On each trial, a single disk on a black or white background was presented in isolation. The first column shows stimuli with a black overlay, the second with a white overlay, and the third with a gray overlay. Each row shows a different transparency (i.e., alpha) level; (a)  alpha = 0 ; (b)  alpha = 0.2 ; (c)  alpha = 0.6 ; (d)  alpha = 0.8 .

Fig. 3.
Fig. 3.

Results of Experiment 1. (a)–(c) The average of the observer settings as a function of the transmission level of the transparency layer. Triangles show matches for black surround; squares, for white surround. The panels indicate the color of the transparency layer: (a) black; (b) gray; and (c) white. (d) The difference between the white and black backgrounds for each transparency layer in Panels (a)–(c). High values indicate strong SBC; low values, weak SBC. For each condition, increasing the alpha level of the transparent layer decreases the perceived difference between disks.

Fig. 4.
Fig. 4.

Stimuli for Experiment 2. SBC with seven transparent layers—black, gray, white, red, green, red tissue paper, or newsprint. Each row shows a different transparency (i.e., alpha) level; (a) low; (b)  alpha = low - medium ; (c)  alpha = medium ; and (d)  alpha = high . On each trial, all four of the pairs within each column were presented. The observer’s task was to rank the four pairs according to the strength of the perceived SBC (1 strongest, 4 weakest).

Fig. 5.
Fig. 5.

Average rankings of the SBC pairs shown in Fig. 4. Each panel shows the results for a different type of transparency layer. The average rankings are plotted versus the alpha level (as with Fig. 4, a: alpha = low ; b: alpha = medium ; c: alpha = medium - high ; d: alpha = high ; specific alpha values for each condition are listed on graph bars. Significant differences ( p < 0.01 ) between strongest (lowest value) and weakest (highest value) conditions are marked with a star. For black, red, green, red tissue, and newsprint conditions in (a) and (d)–(g), addition of a transparency increased the reported difference between disks. For the white transparency (c) the difference was diminished by the transparency, and for gray transparency (b) there was no significant difference between any rankings.

Fig. 6.
Fig. 6.

Relative luminance of filtered disks. (a) Four high-pass filtered images for the black overlay condition. (b) Pixel values of filtered disks as a function of alpha value. The diamonds show the pixel values for the disks against the black background while the squares show the pixel values of the disks against the white background. (c) Four high-pass filtered conditions for the white overlay condition. (d) Same as b, but for white overlay.

Fig. 7.
Fig. 7.

Relative luminance and Michelson contrast of disks to background. (a) The physical values of the pixels (luminance) in the black overlay condition are plotted against the alpha level for the black and white backgrounds. Lines overlap because values are identical. (b) The Michelson contrast of the disks to the background is plotted against the alpha level for the black and white backgrounds; black background is represented by diamonds, white is represented by squares. (c) Same as Panel (a), but for white overlay. (d) Same as Panel (b), but for white overlay.

Metrics