Abstract

This study tested two hypotheses: (1) that non-cardinal color mechanisms may be due to individual differences: some subjects have them (or have stronger ones), while other subjects do not; and (2) that non-cardinal mechanisms may be stronger in the isoluminant plane of color space than in the two planes with luminance. Five to six subjects per color plane were tested on three psychophysical paradigms: adaptation, noise masking, and plaid coherence. There were no consistent individual differences in non-cardinal mechanism strength across the three paradigms. In group-averaged data, non-cardinal mechanisms appear to be weaker in the two planes with luminance than in the isoluminant plane.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  2. R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. A 56, 966–977 (1966).
  3. H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
    [CrossRef]
  4. E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990).
    [CrossRef]
  5. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
    [CrossRef]
  6. K. L. Gunther, “Non-cardinal color perception across the retina: easy for orange, hard for burgundy and sky blue,” J. Opt. Soc. Am. A 31, A274–A282 (2014).
    [CrossRef]
  7. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
  8. C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
    [CrossRef]
  9. D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
    [CrossRef]
  10. G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
    [CrossRef]
  11. L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
    [CrossRef]
  12. B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
    [CrossRef]
  13. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
    [CrossRef]
  14. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982).
    [CrossRef]
  15. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
    [CrossRef]
  16. Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
    [CrossRef]
  17. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
    [CrossRef]
  18. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef]
  19. C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
    [CrossRef]
  20. K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
    [CrossRef]
  21. M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
    [CrossRef]
  22. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [CrossRef]
  23. F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
    [CrossRef]
  24. T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5 (2006).
    [CrossRef]
  25. A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
    [CrossRef]
  26. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
    [CrossRef]
  27. T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26 (2013).
    [CrossRef]
  28. K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
    [CrossRef]
  29. F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
    [CrossRef]
  30. J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
    [CrossRef]
  31. M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
    [CrossRef]
  32. P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
    [CrossRef]
  33. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
    [CrossRef]
  34. R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
    [CrossRef]
  35. P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990).
    [CrossRef]
  36. M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
    [CrossRef]
  37. N. Goda and M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vis. Res. 41, 2475–2485 (2001).
    [CrossRef]
  38. A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
    [CrossRef]
  39. Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
    [CrossRef]
  40. T. Sato, T. Nagai, and S. Nakauchi, “Individual differences in higher-order chromatic mechanisms measured with classification image technique,” in International Color Vision Society, Kongsberg, Norway (2011).
  41. V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
  42. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
    [CrossRef]
  43. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  44. R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
    [CrossRef]
  45. R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
    [CrossRef]
  46. B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
    [CrossRef]
  47. R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
    [CrossRef]
  48. K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000).
    [CrossRef]
  49. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  50. J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.
  51. T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
    [CrossRef]

2014 (1)

2013 (1)

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26 (2013).
[CrossRef]

2012 (1)

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

2011 (1)

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

2009 (5)

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

2008 (2)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

2007 (1)

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

2006 (1)

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5 (2006).
[CrossRef]

2005 (1)

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

2004 (2)

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
[CrossRef]

2003 (1)

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

2001 (3)

N. Goda and M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vis. Res. 41, 2475–2485 (2001).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

2000 (2)

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000).
[CrossRef]

1998 (4)

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

1997 (3)

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

1996 (1)

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

1994 (1)

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

1993 (1)

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

1992 (4)

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

1991 (3)

M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
[CrossRef]

1990 (3)

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990).
[CrossRef]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990).
[CrossRef]

1989 (1)

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

1986 (1)

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
[CrossRef]

1985 (1)

V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).

1984 (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982).
[CrossRef]

1979 (1)

1966 (1)

R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. A 56, 966–977 (1966).

Abramov, I.

R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. A 56, 966–977 (1966).

Albright, T. D.

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Berendschot, T. T.

Bieber, M. L.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Bone, R. A.

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Boynton, R. M.

Brouwer, G. J.

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
[CrossRef]

Cains, A.

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Cavanagh, P.

P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990).
[CrossRef]

Conway, B. R.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

D’Zmura, M.

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
[CrossRef]

De Valois, K. K.

F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
[CrossRef]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

DeValois, R. L.

R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. A 56, 966–977 (1966).

Dhruv, N. T.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

Dobkins, K. R.

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000).
[CrossRef]

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Eskew, R. T.

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

Farell, B.

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

Favreau, O. E.

P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990).
[CrossRef]

Fenstemaker, S. B.

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

Flanagan, P.

P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990).
[CrossRef]

Fujii, M.

N. Goda and M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vis. Res. 41, 2475–2485 (2001).
[CrossRef]

Gagin, G.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

Gegenfurtner, K.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

Gegenfurtner, K. R.

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26 (2013).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5 (2006).
[CrossRef]

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

Giesel, M.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

Giulianini, F.

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

Goda, N.

N. Goda and M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vis. Res. 41, 2475–2485 (2001).
[CrossRef]

Goulermas, J. Y.

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

Grosof, D. H.

F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
[CrossRef]

Gunther, K. L.

K. L. Gunther, “Non-cardinal color perception across the retina: easy for orange, hard for burgundy and sky blue,” J. Opt. Soc. Am. A 31, A274–A282 (2014).
[CrossRef]

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000).
[CrossRef]

Halevy, D.

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

Hammond, B. R.

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

Hansen, T.

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26 (2013).
[CrossRef]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5 (2006).
[CrossRef]

Hawken, M. J.

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Heeger, D. J.

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982).
[CrossRef]

Jacobs, G. H.

R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. A 56, 966–977 (1966).

Kaplan, E.

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990).
[CrossRef]

Kiper, D. C.

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

Knau, H.

Knoblauch, K.

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

Kolb, H.

H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
[CrossRef]

Kooi, F. L.

F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
[CrossRef]

Kraft, J. M.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Krauskopf, J.

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.

Kremers, J.

Lafer-Sousa, R.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

Landrum, J. T.

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Lee, B. B.

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990).
[CrossRef]

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Li, A.

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

MacLeod, D. I.

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
[CrossRef]

Marsman, J. B.

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

Mizokami, Y.

Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
[CrossRef]

Moeller, S.

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Mollon, J. D.

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Monnier, P.

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

Mullen, K. T.

Nagai, T.

T. Sato, T. Nagai, and S. Nakauchi, “Individual differences in higher-order chromatic mechanisms measured with classification image technique,” in International Color Vision Society, Kongsberg, Norway (2011).

Nagy, A. L.

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

Nakauchi, S.

T. Sato, T. Nagai, and S. Nakauchi, “Individual differences in higher-order chromatic mechanisms measured with classification image technique,” in International Color Vision Society, Kongsberg, Norway (2011).

Neriani, K. E.

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

Newton, J. R.

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

Oxley, D. C.

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

Paras, C.

Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
[CrossRef]

Parkes, L. M.

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

Pass, A. S.

V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).

Peterzell, D. H.

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000).
[CrossRef]

Pokorny, J.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).

Pracejus, L.

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

Sankeralli, M. J.

Sato, T.

T. Sato, T. Nagai, and S. Nakauchi, “Individual differences in higher-order chromatic mechanisms measured with classification image technique,” in International Color Vision Society, Kongsberg, Norway (2011).

Scholl, H. P.

Sclar, G.

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

Shapley, R.

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Shapley, R. M.

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990).
[CrossRef]

Sharpe, L. T.

Shevell, S. K.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

Smith, V. C.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).

Solomon, S. G.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Stoner, G. R.

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Stoughton, C. M.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

Switkes, E.

F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
[CrossRef]

Tailby, C.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Tsao, D. Y.

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Usui, T.

Vimal, R. L.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

Webster, M. A.

Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Werner, J. S.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982).
[CrossRef]

Wooten, B. R.

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

Wu, H. J.

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

Wuerger, S. M.

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

Young, T. L.

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

Zaidi, Q.

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

Am. J. Ophthalmol. (1)

V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).

J. Neurosci. (5)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Physiol. (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis. (5)

L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26 (2013).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5 (2006).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

Nature (1)

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Neuron (1)

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Optom. Vis. Sci. (1)

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

Perception (2)

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992).
[CrossRef]

Prog. Retin. Res. (1)

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990).
[CrossRef]

Vis. Neurosci. (4)

H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
[CrossRef]

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
[CrossRef]

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

Vis. Res (2)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986).
[CrossRef]

Vis. Res. (19)

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
[CrossRef]

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990).
[CrossRef]

N. Goda and M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vis. Res. 41, 2475–2485 (2001).
[CrossRef]

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000).
[CrossRef]

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Other (2)

T. Sato, T. Nagai, and S. Nakauchi, “Individual differences in higher-order chromatic mechanisms measured with classification image technique,” in International Color Vision Society, Kongsberg, Norway (2011).

J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

DKL three-dimensional color space. Cone inputs are shown on axes: L, long-wavelength sensitive; M, medium-wavelength sensitive; S, short-wavelength sensitive. Reprinted from GuntherK. L.DobkinsK. R., “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683696 (2003).10.1016/S0042-6989(02)00689-2VISRAM0042-6989[20]. Copyright 2003, with permission from Elsevier.

Fig. 2.
Fig. 2.

Individual differences analysis. Each block of graphs is from a different color plane. Paradigms are shown in columns, subjects in rows (subject RND is a deuteranope). Fine gray axis lines denote normalized unit thresholds. Solid black lines represent the aligned conditions, dotted red lines denote the orthogonal conditions. See text for description on how these were calculated. Each graph has been scaled to the maximum value for that graph. Percent coherence is plotted in the plaid coherence plots. The opposite poles of each axis are symmetrical because the stimuli were presented as bipolar (e.g., red/green) gratings, not unipolar (e.g., red or green) stimuli. The key to axis orientation is at the end of the TRIT/LUM set of graphs, shown for each plane—axis abbreviations as in Table 3.

Fig. 3.
Fig. 3.

Group average data. Paradigms are shown in columns, color planes in rows. Solid black lines represent the aligned condition, dotted red lines denote the orthogonal condition. Standard error of the mean (±SEM) is denoted by gray or pink shading. Axis lines denote normalized unit thresholds—see text for description for how these were calculated. Axis abbreviations as in Table 3.

Tables (4)

Tables Icon

Table 1. Review of the Literature on the Existence of Non-Cardinal Color Mechanismsa

Tables Icon

Table 2. MacLeod–Boynton Color Space Coordinates of Stimuli

Tables Icon

Table 3. Color Pairings for the Adaptation and Noise Masking Paradigms

Tables Icon

Table 4. p-Values from Paired t-Tests on the Data in Fig. 3a

Metrics