Abstract

The OSCAR test, a clinical device that uses counterphase flicker photometry, is believed to be sensitive to the relative numbers of long-wavelength and middle-wavelength cones in the retina, as well as to individual variations in the spectral positions of the photopigments. As part of a population study of individual variations in perception, we obtained OSCAR settings from 1058 participants. We report the distribution characteristics for this cohort. A randomly selected subset of participants was tested twice at an interval of at least one week: the test–retest reliability (Spearman’s rho) was 0.80. In a whole-genome association analysis we found a provisional association with a single nucleotide polymorphism (rs16844995). This marker is close to the gene RXRG, which encodes a nuclear receptor, retinoid X receptor γ. This nuclear receptor is already known to have a role in the differentiation of cones during the development of the eye, and we suggest that polymorphisms in or close to RXRG influence the relative probability with which long-wave and middle-wave opsin genes are expressed in human cones.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).
  2. Hl. de Vries, “An extension of Helmholtz’s theory of colorvision,” in Réunions d’Opticiens tenue à Paris en Octobre 1946, P. Fleury, A. Maréchal, and C. Anglade, eds. (Éditions de la Revue D’Optique, 1950), pp. 361–370.
  3. W. A. H. Rushton and H. D. Baker, “Red-green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
    [CrossRef]
  4. Hl. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
    [CrossRef]
  5. J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  6. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).
  7. M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
    [CrossRef]
  8. M. Alpern and J. Moeller, “The red and green cone visual pigments of deuteranomalous trichromacy,” J. Physiol. 266, 647–675 (1977).
  9. H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).
  10. J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
    [CrossRef]
  11. S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992).
    [CrossRef]
  12. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
    [CrossRef]
  13. G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII (Springer, 1997), pp. 385–392.
  14. O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).
  15. H. Le Sueur, J. D. Mollon, J. Granzier, and G. Jordan, “Counterphase modulation photometry: comparison of two instruments,” J. Opt. Soc. Am. A 31, A34–A37 (2014).
    [CrossRef]
  16. A. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
    [CrossRef]
  17. J. D. Mollon, “On the origins of polymorphisms,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium (National Academy, 1987), pp. 160–168.
  18. M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013).
    [CrossRef]
  19. M. F. Lyon, “Gene action in the X-chromosome of mouse (Mus Musculus L),” Nature 190, 372–373 (1961).
    [CrossRef]
  20. S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
    [CrossRef]
  21. Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).
  22. S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).
  23. S. S. Deeb, “Genetics of variation in human color vision and the retinal cone mosaic,” Curr. Opin. Genet. Dev. 16, 301–307 (2006).
    [CrossRef]
  24. K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
    [CrossRef]
  25. P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
    [CrossRef]
  26. A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
    [CrossRef]
  27. P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
    [CrossRef]
  28. J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).
  29. R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
  30. A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” in Proceedings of the Tel-Hashomer Hospital (Tel-Aviv, 1969), pp. 2–6.
  31. J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).
  32. O. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Melsungen, 1935).
  33. J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).
  34. R. Lakowski, “Theory and practice of colour vision testing: a review. Part 2,” Brit. J. Indust. Med. 26, 265–288 (1969).
  35. J. D. Mollon, ““Cherries among the leaves”: the evolutionary origins of color vision,” in Color Perception: Philosophical, Psychological, Artistic and Computational Perspectives, S. Davis, ed. (Oxford University, 2000), pp. 10–30.
  36. D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
    [CrossRef]
  37. G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993).
    [CrossRef]
  38. S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).
  39. R. Lakowski, “Colorimetric and photometric data for the 10th edition of the Ishihara plates,” Brit. J. Physiolog. Opt. 22, 195–207 (1965).
  40. M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
    [CrossRef]
  41. M. I. Dawson and Z. Xia, “The retinoid X receptors and their ligands,” Biochim. Biophys. Acta 1821, 21–56 (2012).
    [CrossRef]
  42. A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
    [CrossRef]
  43. A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010).
    [CrossRef]
  44. L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).
  45. D. Forrest and A. Swaroop, “Minireview: the role of nuclear receptors in photoreceptor differentiation and disease,” Mol. Endocrinol. 26, 905–915 (2012).
  46. S. S. Deeb and Y. Liu, “Thyroid hormone and 9—cis retinoic acid transcriptionally activate the human L/M cone opsin genes,” Investig. Ophthalmol. Vis. Sci. 46, E-Abstract 3074 (2005).
    [CrossRef]
  47. F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
    [CrossRef]
  48. M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
    [CrossRef]
  49. M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

2014 (1)

2013 (2)

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013).
[CrossRef]

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

2012 (4)

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
[CrossRef]

M. I. Dawson and Z. Xia, “The retinoid X receptors and their ligands,” Biochim. Biophys. Acta 1821, 21–56 (2012).
[CrossRef]

D. Forrest and A. Swaroop, “Minireview: the role of nuclear receptors in photoreceptor differentiation and disease,” Mol. Endocrinol. 26, 905–915 (2012).

2010 (2)

A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
[CrossRef]

A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010).
[CrossRef]

2008 (1)

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

2006 (2)

S. S. Deeb, “Genetics of variation in human color vision and the retinal cone mosaic,” Curr. Opin. Genet. Dev. 16, 301–307 (2006).
[CrossRef]

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

2005 (2)

S. S. Deeb and Y. Liu, “Thyroid hormone and 9—cis retinoic acid transcriptionally activate the human L/M cone opsin genes,” Investig. Ophthalmol. Vis. Sci. 46, E-Abstract 3074 (2005).
[CrossRef]

M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
[CrossRef]

2004 (1)

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

2003 (1)

D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

2001 (2)

M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

2000 (1)

1999 (1)

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

1998 (2)

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

1993 (1)

G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993).
[CrossRef]

1992 (3)

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992).
[CrossRef]

A. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

1990 (1)

M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
[CrossRef]

1983 (2)

H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).

O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).

1977 (1)

M. Alpern and J. Moeller, “The red and green cone visual pigments of deuteranomalous trichromacy,” J. Physiol. 266, 647–675 (1977).

1969 (1)

R. Lakowski, “Theory and practice of colour vision testing: a review. Part 2,” Brit. J. Indust. Med. 26, 265–288 (1969).

1965 (1)

R. Lakowski, “Colorimetric and photometric data for the 10th edition of the Ishihara plates,” Brit. J. Physiolog. Opt. 22, 195–207 (1965).

1964 (1)

W. A. H. Rushton and H. D. Baker, “Red-green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

1961 (1)

M. F. Lyon, “Gene action in the X-chromosome of mouse (Mus Musculus L),” Nature 190, 372–373 (1961).
[CrossRef]

1959 (1)

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).

1958 (1)

S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).

1957 (1)

J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).

1948 (1)

Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).

1946 (1)

Hl. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
[CrossRef]

Adam, A.

A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” in Proceedings of the Tel-Hashomer Hospital (Tel-Aviv, 1969), pp. 2–6.

Alpern, M.

M. Alpern and J. Moeller, “The red and green cone visual pigments of deuteranomalous trichromacy,” J. Physiol. 266, 647–675 (1977).

Baker, H. D.

W. A. H. Rushton and H. D. Baker, “Red-green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

Bargary, G.

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

Belcher, S. J.

S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).

Berendschot, T. T. J. M.

Bieber, M. L.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Birch, J.

J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).

Blackshaw, S.

A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
[CrossRef]

Blesh, D.

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

Bosten, J. M.

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

Bowmaker, J. K.

H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).

Boynton, R. M.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).

Brickell, P. M.

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

Chambon, P.

M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

Chan, C. H.

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013).
[CrossRef]

Chen, S. M.

A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
[CrossRef]

Cherny, S. S.

M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
[CrossRef]

Cowan, M.

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

Cox, N. J.

M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
[CrossRef]

Crone, R. A.

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).

Dacey, D. M.

D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

Danilova, M. V.

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013).
[CrossRef]

Dartnall, H. J. A.

H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).

Dawson, M. I.

M. I. Dawson and Z. Xia, “The retinoid X receptors and their ligands,” Biochim. Biophys. Acta 1821, 21–56 (2012).
[CrossRef]

de Vries, Hl.

Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).

Hl. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
[CrossRef]

Hl. de Vries, “An extension of Helmholtz’s theory of colorvision,” in Réunions d’Opticiens tenue à Paris en Octobre 1946, P. Fleury, A. Maréchal, and C. Anglade, eds. (Éditions de la Revue D’Optique, 1950), pp. 361–370.

Deeb, S. S.

S. S. Deeb, “Genetics of variation in human color vision and the retinal cone mosaic,” Curr. Opin. Genet. Dev. 16, 301–307 (2006).
[CrossRef]

S. S. Deeb and Y. Liu, “Thyroid hormone and 9—cis retinoic acid transcriptionally activate the human L/M cone opsin genes,” Investig. Ophthalmol. Vis. Sci. 46, E-Abstract 3074 (2005).
[CrossRef]

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

Dierks, B.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Dorschner, M.

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

Estévez, O.

O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).

Forrest, D.

D. Forrest and A. Swaroop, “Minireview: the role of nuclear receptors in photoreceptor differentiation and disease,” Mol. Endocrinol. 26, 905–915 (2012).

A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010).
[CrossRef]

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

François, J.

J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).

Ghyselinck, N. B.

M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

Glover, J. C.

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

Goodbourn, P. T.

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

Granzier, J.

Greenshields, K. W.

S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).

Gunther, K. L.

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

Hendrickson, A.

M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
[CrossRef]

Hogg, R. E.

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

Hood, S. M.

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

Hoover, F.

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

Hurley, J. B.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Jordan, G.

H. Le Sueur, J. D. Mollon, J. Granzier, and G. Jordan, “Counterphase modulation photometry: comparison of two instruments,” J. Opt. Soc. Am. A 31, A34–A37 (2014).
[CrossRef]

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993).
[CrossRef]

G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII (Springer, 1997), pp. 385–392.

Kielland, A.

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

Kim, D.

A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010).
[CrossRef]

Knau, H.

Kraft, J. M.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Kremers, J.

Kutyavin, T.

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

Lakowski, R.

R. Lakowski, “Theory and practice of colour vision testing: a review. Part 2,” Brit. J. Indust. Med. 26, 265–288 (1969).

R. Lakowski, “Colorimetric and photometric data for the 10th edition of the Ishihara plates,” Brit. J. Physiolog. Opt. 22, 195–207 (1965).

Lawler, A.

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

Lawrance-Owen, A.

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

Lawrance-Owen, A. J.

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

Le Sueur, H.

Li, M. X.

M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
[CrossRef]

Lindsay, D. T.

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

Liu, Y.

S. S. Deeb and Y. Liu, “Thyroid hormone and 9—cis retinoic acid transcriptionally activate the human L/M cone opsin genes,” Investig. Ophthalmol. Vis. Sci. 46, E-Abstract 3074 (2005).
[CrossRef]

Lutze, M.

M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
[CrossRef]

Lyon, M. F.

M. F. Lyon, “Gene action in the X-chromosome of mouse (Mus Musculus L),” Nature 190, 372–373 (1961).
[CrossRef]

Mark, M.

M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

McGuire, C. R.

M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
[CrossRef]

Merbs, S. L.

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992).
[CrossRef]

Metha, A.

A. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

Moeller, J.

M. Alpern and J. Moeller, “The red and green cone visual pigments of deuteranomalous trichromacy,” J. Physiol. 266, 647–675 (1977).

Mollon, J. D.

H. Le Sueur, J. D. Mollon, J. Granzier, and G. Jordan, “Counterphase modulation photometry: comparison of two instruments,” J. Opt. Soc. Am. A 31, A34–A37 (2014).
[CrossRef]

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013).
[CrossRef]

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993).
[CrossRef]

H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII (Springer, 1997), pp. 385–392.

J. D. Mollon, ““Cherries among the leaves”: the evolutionary origins of color vision,” in Color Perception: Philosophical, Psychological, Artistic and Computational Perspectives, S. Davis, ed. (Oxford University, 2000), pp. 10–30.

J. D. Mollon, “On the origins of polymorphisms,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium (National Academy, 1987), pp. 160–168.

Mori, M.

M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

Mortier, V.

J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).

Motulsky, A. G.

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

Nathans, J.

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992).
[CrossRef]

Neitz, J.

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

Neitz, M.

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

Ng, L.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Onishi, A.

A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
[CrossRef]

Peng, G. H.

A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
[CrossRef]

Pinckers, A. J. L. G.

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Pokorny, J.

M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
[CrossRef]

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Purves, L.

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

Reh, T. A.

M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
[CrossRef]

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Roberts, M. R.

M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
[CrossRef]

Rushton, W. A. H.

W. A. H. Rushton and H. D. Baker, “Red-green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

Salto, C.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Sanocki, E.

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

Scholl, H. P. N.

Seleiro, E. A.

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

Shafer, A.

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

Sham, P. C.

M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
[CrossRef]

Sharpe, L. T.

Smallwood, P. M.

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

Smith, V. C.

M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
[CrossRef]

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Spekreijse, H.

O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).

Srinivas, M.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Stamatoyannopolous, J.

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

Swaroop, A.

D. Forrest and A. Swaroop, “Minireview: the role of nuclear receptors in photoreceptor differentiation and disease,” Mol. Endocrinol. 26, 905–915 (2012).

A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010).
[CrossRef]

Teller, D. Y.

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

Usui, T.

van Dalen, J. T. W.

O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).

Vanderdonck, R.

J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).

Vennstrom, B.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Verduyn Lunel, H. F. E.

O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).

Verriest, G.

J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Vierling, O.

O. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Melsungen, 1935).

Vingrys, A. J.

A. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

Wang, Y.

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

Werner, J. S.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Winderickx, J.

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

Wright, W. D.

S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).

Xia, Z.

M. I. Dawson and Z. Xia, “The retinoid X receptors and their ligands,” Biochim. Biophys. Acta 1821, 21–56 (2012).
[CrossRef]

Yeung, J. M. Y.

M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
[CrossRef]

Am. J. Ophthalmol. (1)

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).

Am. J. Optom. Physiolog. Opt. (1)

O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).

Biochim. Biophys. Acta (1)

M. I. Dawson and Z. Xia, “The retinoid X receptors and their ligands,” Biochim. Biophys. Acta 1821, 21–56 (2012).
[CrossRef]

Brit. J. Indust. Med. (1)

R. Lakowski, “Theory and practice of colour vision testing: a review. Part 2,” Brit. J. Indust. Med. 26, 265–288 (1969).

Brit. J. Ophthalmol. (1)

S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).

Brit. J. Physiolog. Opt. (1)

R. Lakowski, “Colorimetric and photometric data for the 10th edition of the Ishihara plates,” Brit. J. Physiolog. Opt. 22, 195–207 (1965).

Clin. Exp. Optom. (1)

A. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992).
[CrossRef]

Curr. Opin. Genet. Dev. (1)

S. S. Deeb, “Genetics of variation in human color vision and the retinal cone mosaic,” Curr. Opin. Genet. Dev. 16, 301–307 (2006).
[CrossRef]

Curr. Opin. Neurobiol. (1)

D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

Genetica (1)

Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).

Hum. Genet. (2)

M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012).
[CrossRef]

A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (4)

S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).

S. S. Deeb and Y. Liu, “Thyroid hormone and 9—cis retinoic acid transcriptionally activate the human L/M cone opsin genes,” Investig. Ophthalmol. Vis. Sci. 46, E-Abstract 3074 (2005).
[CrossRef]

M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).
[CrossRef]

M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

J. Comp. Neurol. (1)

F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

M. Alpern and J. Moeller, “The red and green cone visual pigments of deuteranomalous trichromacy,” J. Physiol. 266, 647–675 (1977).

Mol. Endocrinol. (1)

D. Forrest and A. Swaroop, “Minireview: the role of nuclear receptors in photoreceptor differentiation and disease,” Mol. Endocrinol. 26, 905–915 (2012).

Nat. Genet. (1)

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).

Nat. Neurosci. (1)

A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010).
[CrossRef]

Nat. Rev. Neurosci. (1)

A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010).
[CrossRef]

Nature (4)

M. F. Lyon, “Gene action in the X-chromosome of mouse (Mus Musculus L),” Nature 190, 372–373 (1961).
[CrossRef]

Hl. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
[CrossRef]

J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992).
[CrossRef]

S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992).
[CrossRef]

Nederlands Tijdschrift voor de Psychologie (1)

J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).

Proc. Natl. Acad. Sci. USA (1)

Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).

Proc. R. Soc. B (2)

P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012).
[CrossRef]

H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).

Vis. Neurosci. (1)

K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008).
[CrossRef]

Vis. Res. (6)

M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013).
[CrossRef]

S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006).
[CrossRef]

G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993).
[CrossRef]

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990).
[CrossRef]

W. A. H. Rushton and H. D. Baker, “Red-green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964).
[CrossRef]

Other (10)

Hl. de Vries, “An extension of Helmholtz’s theory of colorvision,” in Réunions d’Opticiens tenue à Paris en Octobre 1946, P. Fleury, A. Maréchal, and C. Anglade, eds. (Éditions de la Revue D’Optique, 1950), pp. 361–370.

G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII (Springer, 1997), pp. 385–392.

J. D. Mollon, ““Cherries among the leaves”: the evolutionary origins of color vision,” in Color Perception: Philosophical, Psychological, Artistic and Computational Perspectives, S. Davis, ed. (Oxford University, 2000), pp. 10–30.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).

J. D. Mollon, “On the origins of polymorphisms,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium (National Academy, 1987), pp. 160–168.

P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press).
[CrossRef]

J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).

O. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Melsungen, 1935).

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” in Proceedings of the Tel-Hashomer Hospital (Tel-Aviv, 1969), pp. 2–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Relationship between OSCAR settings on Session 1 and Session 2 for the subset of 104 randomly selected participants who were tested on two occasions at least one week apart. For an explanation of the scales, see Section 2.B.

Fig. 2.
Fig. 2.

Distribution of OSCAR settings for the full population of 1058 participants. The solid line shows the probability density function (pdf) for those participants who were estimated to be probably color normal from their responses to the Ishihara plates. The broken line shows the probability density function for participants who gave abnormal readings on the Ishihara plates. A subset of these participants were classified as “protan” or “deutan” by Ishihara plate 24: the settings of these subjects are indicated by “P” or “D.”

Fig. 3.
Fig. 3.

Manhattan diagram for the region around rs16844995. In the upper panel, log(p) values for the associations between rank of OSCAR setting and genotyped SNPs are indicated by the diamonds with black borders. Over a region 1.25 Mbp on either side of rs16844995, we imputed additional common SNPs identified by the 1000 genomes project. Associations with these imputed SNPs are indicated by the diamonds without borders, with saturation corresponding to imputation quality. Recombination rate is plotted with a solid blue line. The lower panel shows the genes present in this region. Vertical rectangles indicate exons. The vertical blue dashed lines in both panels define the region identified by a clumping analysis. This is the region in which the putative causal variant is likely to lie. Additional details of the methods for these analyses have been given by Lawrance-Owen et al. [26].

Tables (1)

Tables Icon

Table 1. List of Single Nucleotide Polymorphisms that have Suggestive Associations with Settings on the OSCAR Test

Metrics