Abstract

Troxler showed that fixated stimuli fade faster in peripheral than in foveal vision. We used a time-varying procedure, to show that peripheral adaptation is faster and more pronounced than foveal adaptation for the three cardinal color modulations that isolate different classes of retinal ganglion cells. We then tested the hypothesis that fixational eye movements control the magnitude and speed of adaptation, by simulating them with intermittent flashes, and attenuating their effects with blurred borders. Psychophysical and electrophysiological results confirmed the eye movement-based hypothesis. By comparing effects across classes of ganglion cells, we found that the effects of eye movements are mediated not only by the increase in size of receptive fields with eccentricity, but also by the sensitivity of different ganglion cells to sharp borders and transient changes in the stimulus. Finally, using the same paradigm with retinal ganglion cells, we show that adaptation parameters do not vary for the three classes of ganglion cells for eccentricities from 2° to 12°, in the absence of eye movement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
    [CrossRef]
  2. Q. Zaidi, “The role of adaptation in color constancy,” in Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision, C. W. G. Clifford and G. Rhodes, eds. (Oxford University, 2005), pp. 103–131.
  3. M. A. Webster, “Evolving concepts of sensory adaptation,” F1000 Biol. Rep. 4, 21–28 (2012).
    [CrossRef]
  4. D. Troxler, “Über das verschwinden gegebener gegenstände innerhalb unseres gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmologische bibliothek 2, 1–53 (1804).
  5. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004).
    [CrossRef]
  6. S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
    [CrossRef]
  7. J. Krauskopf, “Effect of retinal image stabilization on the appearance of heterochromatic targets,” J. Opt. Soc. Am. 53, 741 (1963).
    [CrossRef]
  8. R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).
  9. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The disappearance of steadily fixated visual test objects,” J. Opt. Soc. Am. 43, 495–500 (1953).
    [CrossRef]
  10. F. J. J. Clarke, “Rapid light adaptation of localised areas of the extra-foveal retina,” Opt. Acta 4, 69–77 (1957).
    [CrossRef]
  11. F. J. J. Clarke, “A study of Troxler’s effect,” Opt. Acta 7, 219–236 (1960).
    [CrossRef]
  12. F. J. J. Clarke, “Visual recovery following local adaptation of the peripheral retina (Troxler’s effect),” Opt. Acta 8, 121–135 (1961).
    [CrossRef]
  13. F. J. J. Clarke and S. J. Belcher, “On the localization of Troxler’s effect in the visual pathway,” Vis. Res. 2, 53–68 (1962).
    [CrossRef]
  14. M. Bach, “Hinton’s “Lilac chaser”,” http://www.michaelbach.de/ot/col_lilacChaser/index.html (2005).
  15. A. E. Welchman and J. M. Harris, “Filling-in the details on perceptual fading,” Vis. Res. 41, 2107–2117 (2001).
    [CrossRef]
  16. M. Millodot, “Variations extra-fovéales du phénomène de troxler,” Psychologie Française 12, 190–196 (1967).
  17. Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
    [CrossRef]
  18. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  19. J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  20. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
    [CrossRef]
  21. T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995).
    [CrossRef]
  22. D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
    [CrossRef]
  23. Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
    [CrossRef]
  24. D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
  25. B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
    [CrossRef]
  26. T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996).
    [CrossRef]
  27. D. H. C. Nothdurft and B. B. Lee, “Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing in single neurones,” Exp. Brain Res. 48, 43–54 (1982).
  28. A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

2013 (1)

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

2012 (2)

M. A. Webster, “Evolving concepts of sensory adaptation,” F1000 Biol. Rep. 4, 21–28 (2012).
[CrossRef]

Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
[CrossRef]

2010 (1)

B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

2006 (2)

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
[CrossRef]

2005 (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
[CrossRef]

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004).
[CrossRef]

2001 (1)

A. E. Welchman and J. M. Harris, “Filling-in the details on perceptual fading,” Vis. Res. 41, 2107–2117 (2001).
[CrossRef]

1996 (1)

T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996).
[CrossRef]

1995 (1)

T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995).
[CrossRef]

1993 (2)

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).

1992 (1)

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

1984 (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1982 (2)

J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

D. H. C. Nothdurft and B. B. Lee, “Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing in single neurones,” Exp. Brain Res. 48, 43–54 (1982).

1967 (1)

M. Millodot, “Variations extra-fovéales du phénomène de troxler,” Psychologie Française 12, 190–196 (1967).

1963 (1)

1962 (1)

F. J. J. Clarke and S. J. Belcher, “On the localization of Troxler’s effect in the visual pathway,” Vis. Res. 2, 53–68 (1962).
[CrossRef]

1961 (1)

F. J. J. Clarke, “Visual recovery following local adaptation of the peripheral retina (Troxler’s effect),” Opt. Acta 8, 121–135 (1961).
[CrossRef]

1960 (1)

F. J. J. Clarke, “A study of Troxler’s effect,” Opt. Acta 7, 219–236 (1960).
[CrossRef]

1959 (1)

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).

1957 (1)

F. J. J. Clarke, “Rapid light adaptation of localised areas of the extra-foveal retina,” Opt. Acta 4, 69–77 (1957).
[CrossRef]

1953 (1)

1804 (1)

D. Troxler, “Über das verschwinden gegebener gegenstände innerhalb unseres gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmologische bibliothek 2, 1–53 (1804).

Arathorn, D. W.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

Belcher, S. J.

F. J. J. Clarke and S. J. Belcher, “On the localization of Troxler’s effect in the visual pathway,” Vis. Res. 2, 53–68 (1962).
[CrossRef]

Cao, D.

Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
[CrossRef]

Clarke, F. J. J.

F. J. J. Clarke and S. J. Belcher, “On the localization of Troxler’s effect in the visual pathway,” Vis. Res. 2, 53–68 (1962).
[CrossRef]

F. J. J. Clarke, “Visual recovery following local adaptation of the peripheral retina (Troxler’s effect),” Opt. Acta 8, 121–135 (1961).
[CrossRef]

F. J. J. Clarke, “A study of Troxler’s effect,” Opt. Acta 7, 219–236 (1960).
[CrossRef]

F. J. J. Clarke, “Rapid light adaptation of localised areas of the extra-foveal retina,” Opt. Acta 4, 69–77 (1957).
[CrossRef]

Cornsweet, J. C.

Cornsweet, T. N.

Dacey, D. M.

D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Ditchburn, R. W.

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).

Dyar, T. A.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
[CrossRef]

Ennis, R.

Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
[CrossRef]

Fender, D. H.

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).

Graham, N.

T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995).
[CrossRef]

Grünert, U.

B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

Halevy, D.

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

Harris, J. M.

A. E. Welchman and J. M. Harris, “Filling-in the details on perceptual fading,” Vis. Res. 41, 2107–2117 (2001).
[CrossRef]

Heeley, D.

J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hood, D.

T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995).
[CrossRef]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004).
[CrossRef]

Kaiser, P. K.

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, “Effect of retinal image stabilization on the appearance of heterochromatic targets,” J. Opt. Soc. Am. 53, 741 (1963).
[CrossRef]

Kremers, J.

T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996).
[CrossRef]

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

Lee, B. B.

Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
[CrossRef]

B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996).
[CrossRef]

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

D. H. C. Nothdurft and B. B. Lee, “Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing in single neurones,” Exp. Brain Res. 48, 43–54 (1982).

Lennie, P.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
[CrossRef]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004).
[CrossRef]

Martin, P. R.

B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
[CrossRef]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004).
[CrossRef]

Mayne, S.

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).

Millodot, M.

M. Millodot, “Variations extra-fovéales du phénomène de troxler,” Psychologie Française 12, 190–196 (1967).

Nothdurft, D. H. C.

D. H. C. Nothdurft and B. B. Lee, “Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing in single neurones,” Exp. Brain Res. 48, 43–54 (1982).

Ratliff, F.

Riggs, L. A.

Roorda, A.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

Smithson, H. E.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
[CrossRef]

Stevenson, S. B.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

Sun, H.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

Tiruveedhula, P.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

Troncoso, X. G.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
[CrossRef]

Troxler, D.

D. Troxler, “Über das verschwinden gegebener gegenstände innerhalb unseres gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmologische bibliothek 2, 1–53 (1804).

Valberg, A.

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

von Wiegand, T.

T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995).
[CrossRef]

Webster, M. A.

M. A. Webster, “Evolving concepts of sensory adaptation,” F1000 Biol. Rep. 4, 21–28 (2012).
[CrossRef]

Welchman, A. E.

A. E. Welchman and J. M. Harris, “Filling-in the details on perceptual fading,” Vis. Res. 41, 2107–2117 (2001).
[CrossRef]

Williams, D.

J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Yang, Q.

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

Yeh, T.

T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996).
[CrossRef]

Zaidi, Q.

Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
[CrossRef]

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

Q. Zaidi, “The role of adaptation in color constancy,” in Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision, C. W. G. Clifford and G. Rhodes, eds. (Oxford University, 2005), pp. 103–131.

Curr. Biol. (1)

Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012).
[CrossRef]

Exp. Brain Res. (1)

D. H. C. Nothdurft and B. B. Lee, “Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing in single neurones,” Exp. Brain Res. 48, 43–54 (1982).

F1000 Biol. Rep. (1)

M. A. Webster, “Evolving concepts of sensory adaptation,” F1000 Biol. Rep. 4, 21–28 (2012).
[CrossRef]

J. Neurophysiol. (1)

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

J. Neurosci. (1)

D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).

J. Opt. Soc. Am. (2)

J. Physiol. (3)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

J. Vis. (1)

D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013).
[CrossRef]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004).
[CrossRef]

Neuron (1)

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006).
[CrossRef]

Ophthalmologische bibliothek (1)

D. Troxler, “Über das verschwinden gegebener gegenstände innerhalb unseres gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmologische bibliothek 2, 1–53 (1804).

Opt. Acta (3)

F. J. J. Clarke, “Rapid light adaptation of localised areas of the extra-foveal retina,” Opt. Acta 4, 69–77 (1957).
[CrossRef]

F. J. J. Clarke, “A study of Troxler’s effect,” Opt. Acta 7, 219–236 (1960).
[CrossRef]

F. J. J. Clarke, “Visual recovery following local adaptation of the peripheral retina (Troxler’s effect),” Opt. Acta 8, 121–135 (1961).
[CrossRef]

Phil. Trans. R. Soc. B (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
[CrossRef]

Prog. Retinal Eye Res. (1)

B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

Psychologie Française (1)

M. Millodot, “Variations extra-fovéales du phénomène de troxler,” Psychologie Française 12, 190–196 (1967).

Vis. Res. (6)

A. E. Welchman and J. M. Harris, “Filling-in the details on perceptual fading,” Vis. Res. 41, 2107–2117 (2001).
[CrossRef]

J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

F. J. J. Clarke and S. J. Belcher, “On the localization of Troxler’s effect in the visual pathway,” Vis. Res. 2, 53–68 (1962).
[CrossRef]

T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996).
[CrossRef]

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995).
[CrossRef]

Other (2)

M. Bach, “Hinton’s “Lilac chaser”,” http://www.michaelbach.de/ot/col_lilacChaser/index.html (2005).

Q. Zaidi, “The role of adaptation in color constancy,” in Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision, C. W. G. Clifford and G. Rhodes, eds. (Oxford University, 2005), pp. 103–131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Stimulus time-course: (a) physical stimulus contrast varies as a half-sinusoidal cycle so the contrast Q(t) lies between 0.0 and 1.0. (b) Perceived stimulus time-course reaches identity, or R(t)=0, before Q(t)=0, and then a negative color after-image occurs [note the reverse colors on the last three panels of Fig. 1(b)]. The value of Q(t) at R(t)=0 provides a measure of adaptation.

Fig. 2.
Fig. 2.

In the computational model, a decay function A(t)=eΔ(t)/τ is convolved with the stimulus signal Q(t). The result is subtracted from the stimulus signal so the response is R(t)=Q(t)Q(t)*A(t).

Fig. 3.
Fig. 3.

(a) Response R(t) to a full contrast stimulus Q(t). Identity-point (black line) precedes the point of physical equality (gray line). (b) Q(t) reduced by ω to simulate weaker sensitivity. The identity-point is the same as with the full contrast (black line). (c) Stimulus Q(t) with pulses to background to simulate eye jitter. The null response (black line) occurs later compared to (a) and (b) (dashed line).

Fig. 4.
Fig. 4.

Stimuli sample: (a) L/D 3.2° foveal stimulus (C). (b) L/D 3.2° peripheral stimulus (P) at 8° eccentricity.

Fig. 5.
Fig. 5.

Stimulus contrast values at identity-points: symbols show the mean results across seven observers times 20 trials. Bars showing the 95% confidence interval of the mean were the same size as the triangles (right-pointing for center C, upward-pointing for periphery P, left-pointing for center with jitter simulation C/J, and downward-pointing for periphery with jitter simulation P/J).

Fig. 6.
Fig. 6.

Stimuli sample: (a) L/D 3.2° foveal stimulus with blurred edge (C/B). (b) L/D 3.2° peripheral stimulus with blurred edge (P/B) at 8° eccentricity.

Fig. 7.
Fig. 7.

Stimulus contrast values at identity-point. Symbols show the mean results across six observers times 20 trials (upward/downward-pointing for R/G axis, left/right-pointing for S axis, and square/diamond for L/D axis). Adaptation to sharp edge stimuli are plotted on S-labeled columns while adaptation to blurred edge stimuli are plotted on B labeled columns. Bars show the 95% confidence interval of the mean.

Fig. 8.
Fig. 8.

Stimulus contrast values for RGCs’ null responses relative to eccentricity. Circles denote KC ganglion cells responses to Y/V axis modulation. Triangles denote PC ganglion cells responses to R/G axis modulation (upward-pointing triangle for green-center cells and downward-pointing triangle for red-center cells). Squares denote MC ganglion cell responses to L/D axis modulation. Edged symbols are for ON-type cells and filled symbols are for OFF-type cells. A first-order linear regression shows no tendency (gray line).

Fig. 9.
Fig. 9.

Experiment 1: individual results for the seven observers, O1–O7, from top to bottom.

Fig. 10.
Fig. 10.

Experiment 2: individual results for the six observers, O1–O6, from top to bottom, are the same as O1–O6 in Fig. 9.

Tables (2)

Tables Icon

Table 1. Experiment 1: Paired Comparison t-Tests (Stim1–Stim2) for the Three Cardinal Axesa

Tables Icon

Table 2. Experiment 2: Paired Comparison t-Tests (Stim1–Stim2) for the Three Cardinal Axesa

Metrics