Abstract

We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe’s energy throughput.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [CrossRef]
  2. X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
    [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  4. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18, 4518–4525 (2010).
    [CrossRef]
  5. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15, 3550–3556 (2007).
    [CrossRef]
  6. L. Novotny and S. J. Stranick, “Longitudinal field modes probed by single molecules,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
    [CrossRef]
  7. J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012).
    [CrossRef]
  8. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
    [CrossRef]
  9. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
    [CrossRef]
  10. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009).
    [CrossRef]
  11. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52, 330–339 (2013).
    [CrossRef]
  12. A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202, 94–99 (2001).
    [CrossRef]
  13. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
    [CrossRef]
  14. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
    [CrossRef]
  15. P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
    [CrossRef]
  16. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interface between near-fields and a single-mode fiber,” Opt. Express 18, 15964–15974 (2010).
    [CrossRef]
  17. W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express 21, 8166–8176 (2013).
    [CrossRef]
  18. L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
    [CrossRef]
  19. S. N. Khonina and S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” J. Opt. Soc. Am. A 27, 2188–2197 (2010).
    [CrossRef]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
  21. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20, 23–42 (2011).
    [CrossRef]
  22. S. N. Khonina, S. V. Alferov, and S. V. Karpeev, “Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams,” Opt. Lett. 38, 3223–3226 (2013).
    [CrossRef]

2013 (3)

2012 (1)

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012).
[CrossRef]

2011 (1)

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20, 23–42 (2011).
[CrossRef]

2010 (3)

2009 (1)

2007 (3)

2006 (1)

L. Novotny and S. J. Stranick, “Longitudinal field modes probed by single molecules,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

2005 (2)

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

2003 (2)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202, 94–99 (2001).
[CrossRef]

1998 (1)

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

1994 (1)

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Aeschimann, L.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

Alferov, S. V.

Baida, F.

Bao, W.

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

Bokor, J.

Bouhelier, A.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

Bruyant, A.

Burr, G. W.

Cabrini, S.

Charraut, D.

Chen, W.

Colas des Francs, G.

Dandliker, R.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

Dereux, A.

Descrovi, E.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Dunn, R. C.

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef]

Gan, X.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Grosjean, T.

Gu, M.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Hao, B.

Herzig, H.-P.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

Huang, C.

Ibrahim, I. A.

Ignatovich, F.

Jia, B.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Karpeev, S. V.

Kazanskiy, N. L.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20, 23–42 (2011).
[CrossRef]

Khonina, S. N.

Kitamura, K.

Kotlyar, V. V.

Kovalev, A. A.

Leger, J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Liu, Y.

Mivelle, M.

Nakagawa, W.

Nedeljkovic, D.

Noda, S.

Novotny, L.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[CrossRef]

L. Novotny and S. J. Stranick, “Longitudinal field modes probed by single molecules,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

O’Faolain, L.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Rauch, J.-Y.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Sakai, K.

Salmeron, M. B.

Salut, R.

Sanchez, E. J.

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Sandoghdar, V.

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202, 94–99 (2001).
[CrossRef]

Schuck, P. J.

Stafeev, S. S.

Staffaroni, M.

Staufer, U.

Stranick, S. J.

L. Novotny and S. J. Stranick, “Longitudinal field modes probed by single molecules,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

Tortora, P.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

Vaccaro, L.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

Volotovsky, S. G.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20, 23–42 (2011).
[CrossRef]

S. N. Khonina and S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” J. Opt. Soc. Am. A 27, 2188–2197 (2010).
[CrossRef]

Wang, J.

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012).
[CrossRef]

Wang, Q.

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012).
[CrossRef]

Weber-Bargioni, A.

Weeber, J.-C.

Wiederrecht, G. P.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Xie, X. S.

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef]

Yablonovitch, E.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

Zayats, A. V.

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202, 94–99 (2001).
[CrossRef]

Zhan, Q.

Zhang, M.

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Longitudinal field modes probed by single molecules,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Front. Optoelectron. (1)

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012).
[CrossRef]

J. Microsc. (1)

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202, 94–99 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (4)

Opt. Lett. (3)

Opt. Mem. Neural Netw. (1)

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20, 23–42 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef]

Proc. R. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Science (1)

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994).
[CrossRef]

Ultramicroscopy (2)

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Profilogram of the step in quartz.

Fig. 2.
Fig. 2.

Image of a standard metal-coated aperture probe (a) without a metal coating, (b) with a metal coating, and (c) after a long period of use. (a), (b): SEM photos courtesy of NT-MDT Co., http://www.ntmdt-tips.com/products/view/mf003.

Fig. 3.
Fig. 3.

SNOM images ( 4 μm × 4 μm ) obtained with use of a standard probe: (a) without a phase plate; with a phase step located (b) perpendicular to and (c) in parallel with the polarization axis. Insets: shown for comparison, theoretical distributions to illustrate the conclusions made in the text.

Fig. 4.
Fig. 4.

SNOM images ( 4 μm × 4 μm ) obtained with a large-diameter probe: (a) without a phase plate; with a phase step located (b) perpendicular to and (c) in parallel with the polarization axis; (d) with the phase step located at 45° angle to the polarization axis. Insets: shown for comparison, theoretical distributions to illustrate the conclusions made in the text.

Tables (2)

Tables Icon

Table 1. Distribution of Different Electric Field Components in the Focal Plane (Negative) When Using an Aplanatic Objective with NA = 0.8 Illuminated by a Uniform Beam with Linear Polarization in y Direction

Tables Icon

Table 2. Distribution of the Uniformly Weighted Sum of the Electric Field Components | E x | 2 + | E y | 2 + | E z | 2 (Negative) in the Focal Plane When Using an Aplanatic Objective with NA = 0.8 and Shielded Central Part

Metrics