Abstract

We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and antibonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic forces, even when electric and/or magnetic partial wave resonances are excited.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
    [CrossRef]
  2. C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).
    [CrossRef]
  3. C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).
    [CrossRef]
  4. S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009).
    [CrossRef]
  5. J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012).
    [CrossRef]
  6. C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
    [CrossRef]
  7. M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005).
    [CrossRef]
  8. J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
    [CrossRef]
  9. J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
    [CrossRef]
  10. S. Sukhov, K. Douglass, and A. Dogariu, “Dipole–dipole interaction in random electromagnetic fields,” Opt. Lett. 38, 2385–2387 (2013).
    [CrossRef]
  11. P. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001).
    [CrossRef]
  12. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  13. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
    [CrossRef]
  14. K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Opt. 82, 1767–1791 (2010).
    [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  16. D. F. V. James and E. Wolf, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771818 (1996).
  17. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14, 3366–3371 (1997).
    [CrossRef]
  18. J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Spatial coherence effects in light scattering from metallic nanocylinders,” J. Opt. Soc. Am. A 23, 1349–1358 (2006).
    [CrossRef]
  19. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  20. R. Carminati, “Subwavelength spatial correlations in near-field speckle patterns,” Phys. Rev. A 81, 053804 (2010).
    [CrossRef]
  21. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  22. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
    [CrossRef]
  23. A. T. Friberg and J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988).
    [CrossRef]
  24. J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38, 2869–2872 (2013).
    [CrossRef]
  25. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982).
    [CrossRef]
  26. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
    [CrossRef]
  27. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
    [CrossRef]
  28. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
    [CrossRef]
  29. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [CrossRef]
  30. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [CrossRef]
  31. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011).
    [CrossRef]
  32. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. London, Ser. A 362, 719–737 (2004).
    [CrossRef]
  33. V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
    [CrossRef]
  34. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010).
    [CrossRef]
  35. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).
  36. M. Nieto-Vesperinas and E. Wolf, “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” J. Opt. Soc. Am. A 2, 1429–1434 (1985).
    [CrossRef]
  37. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21, 491–498 (2004).
    [CrossRef]
  38. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
    [CrossRef]
  39. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
    [CrossRef]
  40. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
    [CrossRef]
  41. J. Ellis and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005).
    [CrossRef]
  42. J. M. Auñón and M. Nieto-Vesperinas, “On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources,” Opt. Lett. 38, 58–60 (2013).
    [CrossRef]
  43. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space–frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004).
    [CrossRef]
  44. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  45. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [CrossRef]
  46. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).
    [CrossRef]
  47. F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
    [CrossRef]
  48. S. V. Boriskina, “Theoretical prediction of a dramatic q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006).
    [CrossRef]
  49. S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007).
  50. S. Boriskina, “Photonic molecules and spectral engineering,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 393–421.
  51. H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  52. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [CrossRef]
  53. M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
    [CrossRef]
  54. F. Valdivia-Valero and M. Nieto-Vesperinas, “Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements,” Photon. Nanostruct. Fundam. Applic. 10, 423–434 (2012).
  55. F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
    [CrossRef]
  56. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
    [CrossRef]
  57. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Propagation of particle plasmons in sets of metallic nanocylinders at the exit of subwavelength slits,” J. Nanophoton. 5, 053520 (2011).
    [CrossRef]
  58. S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23, 1565–1573 (2006).
    [CrossRef]

2013

2012

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

F. Valdivia-Valero and M. Nieto-Vesperinas, “Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements,” Photon. Nanostruct. Fundam. Applic. 10, 423–434 (2012).

2011

2010

2009

S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009).
[CrossRef]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).
[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).
[CrossRef]

2008

2007

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007).

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

2006

2005

M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef]

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

J. Ellis and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005).
[CrossRef]

2004

2002

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

2001

P. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001).
[CrossRef]

2000

1999

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

1997

1996

D. F. V. James and E. Wolf, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771818 (1996).

1994

M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

1988

1985

1982

1980

F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Agarwal, G. S.

Aizpurua, J.

Antezza, M.

M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Auñón, J. M.

Backman, V.

Benson, T. M.

S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007).

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Borghi, R.

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

Boriskina, S.

S. Boriskina, “Photonic molecules and spectral engineering,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 393–421.

Boriskina, S. V.

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Cai, Y.

Capasso, F.

Carminati, R.

R. Carminati, “Subwavelength spatial correlations in near-field speckle patterns,” Phys. Rev. A 81, 053804 (2010).
[CrossRef]

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Carney, P. S.

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Chantada, L.

Chaumet, P.

P. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001).
[CrossRef]

Chaumet, P. C.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. London, Ser. A 362, 719–737 (2004).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[CrossRef]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Chen, Z.

Chin, M. K.

M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Chu, D. Y.

M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Cui, X.

Dholakia, K.

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Opt. 82, 1767–1791 (2010).
[CrossRef]

Dogariu, A.

S. Sukhov, K. Douglass, and A. Dogariu, “Dipole–dipole interaction in random electromagnetic fields,” Opt. Lett. 38, 2385–2387 (2013).
[CrossRef]

J. Ellis and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005).
[CrossRef]

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Douglass, K.

Ellis, J.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

J. Ellis and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005).
[CrossRef]

Erni, D.

Eyyuboglu, H. T.

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Friberg, A. T.

Froufe-Pérez, L. S.

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

García-Etxarri, A.

Gbur, G.

S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009).
[CrossRef]

Gomez-Medina, R.

Gómez-Medina, R.

Gori, F.

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
[CrossRef]

Greffet, J. J.

C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
[CrossRef]

Greffet, J.-J.

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Grzegorczyk, T. M.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Hafner, C.

Henkel, C.

C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
[CrossRef]

Ho, S.-T.

M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Ibanescu, M.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

James, D. F. V.

D. F. V. James and E. Wolf, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771818 (1996).

Joannopoulos, J. D.

Johnson, S. G.

Joulain, J.

C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
[CrossRef]

Kaivola, M.

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Spatial coherence effects in light scattering from metallic nanocylinders,” J. Opt. Soc. Am. A 23, 1349–1358 (2006).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Kim, S. M.

S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009).
[CrossRef]

Kong, J. A.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Korotkova, O.

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

Lindberg, J.

Loncar, M.

López, C.

Lu, X.

Lu, X. H.

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

Mondello, A.

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

Mulet, J. P.

C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Nieto-Vesperinas, M.

J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38, 2869–2872 (2013).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources,” Opt. Lett. 38, 58–60 (2013).
[CrossRef]

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012).
[CrossRef]

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
[CrossRef]

F. Valdivia-Valero and M. Nieto-Vesperinas, “Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements,” Photon. Nanostruct. Fundam. Applic. 10, 423–434 (2012).

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Propagation of particle plasmons in sets of metallic nanocylinders at the exit of subwavelength slits,” J. Nanophoton. 5, 053520 (2011).
[CrossRef]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
[CrossRef]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010).
[CrossRef]

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. London, Ser. A 362, 719–737 (2004).
[CrossRef]

M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21, 491–498 (2004).
[CrossRef]

P. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[CrossRef]

M. Nieto-Vesperinas and E. Wolf, “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” J. Opt. Soc. Am. A 2, 1429–1434 (1985).
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Piquero, G.

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

Pitaevskii, L.

M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005).
[CrossRef]

Ponomarenko, S.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Povinelli, M. L.

Qiu, C. W.

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

Rahmani, A.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. London, Ser. A 362, 719–737 (2004).
[CrossRef]

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Ratner, M. A.

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[CrossRef]

Romanini, P.

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

Sáenz, J. J.

Santarsiero, M.

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

Scheffold, F.

Setälä, T.

Sewell, P.

S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007).

Shevchenko, A.

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Smythe, E. J.

Starikov, A.

Stringari, S.

M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005).
[CrossRef]

Sukhov, S.

Taflove, A.

Tervo, J.

Turunen, J.

Valdivia-Valero, F.

F. Valdivia-Valero and M. Nieto-Vesperinas, “Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements,” Photon. Nanostruct. Fundam. Applic. 10, 423–434 (2012).

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
[CrossRef]

Valdivia-Valero, F. J.

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Propagation of particle plasmons in sets of metallic nanocylinders at the exit of subwavelength slits,” J. Nanophoton. 5, 053520 (2011).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
[CrossRef]

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Wang, L. G.

Wang, L. Q.

Wolf, E.

Wong, V.

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[CrossRef]

Zemanek, P.

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Opt. 82, 1767–1791 (2010).
[CrossRef]

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

Zhao, C.

Zhao, C. L.

Zhu, S. Y.

J. Appl. Phys.

M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

J. Nanophoton.

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Propagation of particle plasmons in sets of metallic nanocylinders at the exit of subwavelength slits,” J. Nanophoton. 5, 053520 (2011).
[CrossRef]

J. Opt. A

C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

J. Ellis and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005).
[CrossRef]

F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
[CrossRef]

G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002).
[CrossRef]

Opt. Express

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef]

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
[CrossRef]

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[CrossRef]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).
[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).
[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
[CrossRef]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010).
[CrossRef]

Opt. Lett.

Philos. Trans. R. Soc. London, Ser. A

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. London, Ser. A 362, 719–737 (2004).
[CrossRef]

Photon. Nanostruct. Fundam. Applic.

F. Valdivia-Valero and M. Nieto-Vesperinas, “Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements,” Photon. Nanostruct. Fundam. Applic. 10, 423–434 (2012).

Phys. Rev. A

S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009).
[CrossRef]

R. Carminati, “Subwavelength spatial correlations in near-field speckle patterns,” Phys. Rev. A 81, 053804 (2010).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

Phys. Rev. B

P. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001).
[CrossRef]

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[CrossRef]

Phys. Rev. E

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Phys. Rev. Lett.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005).
[CrossRef]

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Proc. SPIE

S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007).

Rep. Prog. Phys.

D. F. V. James and E. Wolf, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771818 (1996).

Rev. Mod. Opt.

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Opt. 82, 1767–1791 (2010).
[CrossRef]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Sci. Rep.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[CrossRef]

Other

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

S. Boriskina, “Photonic molecules and spectral engineering,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 393–421.

H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Mean forces. Conservative component Fxcons (first row) and nonconservative component Fxnc (second row) of Fx due to the contribution of ex (first column) and of ez (second column) versus the lateral displacement x of the sphere (in wavelength units), for different spot sizes σs. The third column displays the sum of the first and second columns. The distance of the particle to the source is z=0.1λ.

Fig. 2.
Fig. 2.

Same as in Fig. 1 for Fz.

Fig. 3.
Fig. 3.

(a) Illustration of the geometry for resonant wavelength identification of both the single particle and the pair, as well as for the computation of the optical forces. An incident S-polarized field with a GSMS profile (amplitude A=1W/m2, width of its intensity σs=0.05×1500nm, degree of coherence σg=100σs,2σs,0.5σs) impinges the Si cylinders of radius r0 with excitation of their WGMs: TEmn. (a) In order to simulate infinite space, three absorbent, or perfectly matched, layers (PMLs) are located at the upper and lateral boundaries of the calculation window, the lower boundary containing the incident wave profile of the GSMS. (b) Detail of the geometrical cross sections of the particles conforming the “photonic” molecule, where the light intensity |S(r)| is averaged to the surface of the cylinder of radius r0, and the circumference Σ of radius re surrounding each particle is employed to calculate the electromagnetic forces (per axial unit length) [cf. Eq. (13)] (see also [55]). Particles 1 and 2 stand for the lower/right, directly illuminated by the beam, and the upper/left ones, respectively.

Fig. 4.
Fig. 4.

Spatially coherent illumination. (a) Spectral variation of the mean of the ensemble-averaged Poynting vector norm |S(r)| (i.e., the light intensity) in a single cylinder illuminated by a totally coherent GSMS beam. The two magnetic multipole peaks are shown. (b) Same quantity in a range of higher λ in which the Mie coefficients contributing to the scattering cross section are b0 (electric dipole, λ=67nm) and b1 (magnetic dipole, λ=2.7nm); hence the particle is magnetodielectric. The insets in (a) and (b) show the spatial distribution of |S(r)| for WGMs: TE31/WGE21 and TE11/TE01, respectively.

Fig. 5.
Fig. 5.

Spatially coherent illumination. (a) |S(r)| localized in each particle of a “biatomic” photonic molecule versus λ, illuminated as in Fig. 4(a). This leads to the splitting of the TE21 mode of a single particle, which produces a blue-shifted (antisymmetric) and a red-shifted (symmetric) molecular state, respectively. (b) Same quantity showing the other possibility of splitting associated to the same MDR. The blue solid and red dashed lines in (a) stand for the right (i.e., the one directly illuminated) and the left particles, respectively. The same code is used in (b), now for the lower (directly illuminated) and the upper particles, respectively. The insets show the intensity maps of the “molecular” states, again related to each intensity peak concentrated by both particles.

Fig. 6.
Fig. 6.

(a) Same as in Fig. 5(a) in the spectral range in which the single particle is magnetodielectric [cf. Fig. 4(b)]. The first two peaks from the left are associated to the WGM, TE11, while the third one is related to the TE01 mode. (b) Same as in (a) showing the other possibility of splitting for the same MDRs. The interpretation of the so-formed “molecular” states is similar to that of Figs. 5(a) and 5(b).

Fig. 7.
Fig. 7.

(a) Horizontal and (b) vertical components of the time-averaged electromagnetic forces per axial unit length on each cylinder of the particle pair for the orientation shown in Fig. 5(a). (c), (d) Same quantities for the molecule oriented according to Fig. 5(b). The lines with and without points correspond to the force on particles 1 and 2, respectively. The colors are associated to an illuminating GSMS beam with different coherence length-to-spot size ratios: σg/σs: σg=100σs (black), σg=2σs (red), and σg=0.5σs (blue).

Fig. 8.
Fig. 8.

(a), (b) Same quantities as in Figs. 7(a) and 7(b) with the molecule oriented as in Fig. 6(a). (c), (d) Same as in (a) and (b), the molecule now being oriented as in Fig. 6(b). The code of lines and colors is identical to that of Fig. 7.

Fig. 9.
Fig. 9.

Ensemble-averaged forces Fx (first row) and Fy (second row), from a partially coherent GSMS. The first column from the left pertains to the fully coherent source (σg=100λσs), which would correspond to the case of Section 2. For the center and right columns, σs=0.3λ and 0.5λ, respectively.

Fig. 10.
Fig. 10.

Function exp(k2sx2/(4c2)) versus the transversal component sx for different values of the spot size σg and coherence length σs. For sx>1 the evanescent waves are not negligible.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Fi(r,ω)=Ficons(r,ω)+Finc(r,ω)=14ReαiEj*(r,ω)Ej(r,ω)+12ImαEj*(r,ω)iEj(r,ω),
E(r,ω)=e(ks,ω)eiks·rd2s,
Ficons(r,ω)=ik4ReαTrAjk(e)(ks,ksω)×(si*si)eik(s*s)·rd2sd2s,
Finc(r,ω)=12ImαIm{ikTrAjk(e)(ks,ksω)×sieik(s*s)·rd2sd2s},
e(ks,ω)=1(2π)2E(ρ,ω)eiksρd2ρ.
Wij(0)(ρ1,ρ2,ω)=Si(0)(ρ1,ω)Sj(0)(ρ2,ω)μij(0)(ρ2ρ1,ω),
Si(ρ,ω)=Aiexp[ρ2/(2σs,i2)],
μij(ρ2ρ1,ω)=Bijexp[(ρ2ρ1)2/(2σg,ij2)].
Wij(r1,r2,ω)=Ei*(r1,ω)Ej(r2,ω)=qλq(ω)ϕi,q*(r1,ω)ϕj,q(r2,ω),
Dϕi,q(r1,ω)Wij(r1,r2,ω)d3r1=λq(ω)ϕi,q(r2,ω).
Ei(r,ω)=qaq(ω)ϕi,q(r,ω),
aq*(ω)aq(ω)=λq(ω)δqq,aq(ω)=λq1/2(ω)eiαq,
F(r,ω)=qΣε2Re{(Eq·n)Eq*}ε4Eq*·Eqn+μ2Re{(Hq·n)Hq*}μ4Hq*·Hqnds.
Fi(r,ω)=12qRe{αeEj,qiEj,q*}=12qλqRe{αeϕj,qiϕj,q*}.
Wzz(0)(x1,x2,ω)=Aex12+x224σs2e(x1x2)22σg2.
ϕq(x,ω)=(2cπ)1/41(2qq!)1/2Hq(x2c)ecx2,
λq(ω)=(πa+b+c)1/2(ba+b+c)q,
a=14σs2,b=12σg,c=(a2+2ab)1/2.
Φ(ksx)=12πϕ(x,ω)eiksxxdx=(i)q2π(2πc)1/41(2qq!)1/2ek2sx24cHq(ksx2c).

Metrics