Abstract

In this work, a color ghost image of a black-and-white object is obtained by a real-time pseudocolor coding technique that includes equal spatial frequency pseudocolor coding and equal density pseudocolor coding. This method makes the black-and-white ghost image more conducive to observation. Furthermore, since the ghost imaging comes from the intensity cross-correlations of the two beams, ghost imaging with the real-time pseudocolor coding technique is better than classical optical imaging with the same technique in overcoming the effects of light interference.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [CrossRef]
  2. K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
    [CrossRef]
  3. N. D. Hardy, J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87, 023820 (2013).
    [CrossRef]
  4. M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
    [CrossRef]
  5. M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
    [CrossRef]
  6. H. D. Hardy, Analyzing and Improving Image Quality in Reflective Ghost Imaging (MIT, 2011).
  7. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009).
    [CrossRef]
  8. D. Shi, C. Fan, P. Zhang, H. Shen, “Two-wavelength ghost imaging through atmospheric turbulence,” Opt. Express 21, 2050–2064 (2013).
    [CrossRef]
  9. P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
    [CrossRef]
  10. T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [CrossRef]
  11. R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef]
  12. A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [CrossRef]
  13. A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef]
  14. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, M. J. Padgett, “Fast full-color computational imaging with single-pixel detector,” Opt. Express, 21, 23068–23074 (2013).
    [CrossRef]
  15. F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
    [CrossRef]
  16. M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
    [CrossRef]
  17. T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
    [CrossRef]
  18. F. T. S. Yu, S. Jutamulia, S. Z. Yin, Introduction to Information Optics (Academic, 2001).
  19. K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
    [CrossRef]
  20. D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
    [CrossRef]
  21. J. Cheng, S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [CrossRef]
  22. G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
    [CrossRef]
  23. B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
    [CrossRef]
  24. E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
    [CrossRef]
  25. F. W. Billmeyer, M. Saltzman, Principles of Color Technology, 2nd ed. (Wiley-Interscience, 1981).
  26. B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
    [CrossRef]
  27. D. Duan, Y. Xia, “Reflective ghost imaging with classical Gaussian-state light,” Chin. Opt. Lett. 10, 031102 (2012).
    [CrossRef]

2013 (5)

N. D. Hardy, J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87, 023820 (2013).
[CrossRef]

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

D. Shi, C. Fan, P. Zhang, H. Shen, “Two-wavelength ghost imaging through atmospheric turbulence,” Opt. Express 21, 2050–2064 (2013).
[CrossRef]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, M. J. Padgett, “Fast full-color computational imaging with single-pixel detector,” Opt. Express, 21, 23068–23074 (2013).
[CrossRef]

2012 (2)

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

D. Duan, Y. Xia, “Reflective ghost imaging with classical Gaussian-state light,” Chin. Opt. Lett. 10, 031102 (2012).
[CrossRef]

2011 (1)

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

2010 (2)

F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[CrossRef]

2009 (3)

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009).
[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[CrossRef]

2008 (1)

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

2007 (1)

M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

2006 (1)

G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

2005 (2)

A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

2004 (3)

J. Cheng, S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[CrossRef]

2002 (1)

R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[CrossRef]

1980 (1)

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
[CrossRef]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[CrossRef]

Bai, Y. F.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Berardi, V.

G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

Billmeyer, F. W.

F. W. Billmeyer, M. Saltzman, Principles of Color Technology, 2nd ed. (Wiley-Interscience, 1981).

Bowman, R.

Boyd, R. W.

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[CrossRef]

Cao, D.-Z.

D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Chan, K. W. C.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

Chao, T. H.

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
[CrossRef]

Cheng, J.

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009).
[CrossRef]

J. Cheng, S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Duan, D.

Dymek, M. S.

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
[CrossRef]

Edgar, M. P.

Erkmen, B. I.

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

Fan, C.

Fan, H.

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

Ferri, F.

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

Friberg, A. T.

T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[CrossRef]

Gatti, A.

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[CrossRef]

Han, S.

J. Cheng, S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

Hardy, H. D.

H. D. Hardy, Analyzing and Improving Image Quality in Reflective Ghost Imaging (MIT, 2011).

Hardy, N. D.

N. D. Hardy, J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87, 023820 (2013).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

Jonathan, P.

Jutamulia, S.

F. T. S. Yu, S. Jutamulia, S. Z. Yin, Introduction to Information Optics (Academic, 2001).

Leng, H. Y.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Li, M.-F.

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

Liu, Y.

M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Lugiato, L. A.

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[CrossRef]

Luo, K.-H.

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

Magatti, F. F. D.

F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

Magatti, M. B. D.

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

Molteni, M.

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

O’Sullivan, M. N.

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

Padgett, M. J.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[CrossRef]

Saltzman, M.

F. W. Billmeyer, M. Saltzman, Principles of Color Technology, 2nd ed. (Wiley-Interscience, 1981).

Scarcelli, G.

G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Sergienko, A. V.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[CrossRef]

Setala, T.

T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[CrossRef]

Shapiro, J. H.

N. D. Hardy, J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87, 023820 (2013).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

Shen, H.

Shen, X.

M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Shi, D.

Shih, Y. H.

G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[CrossRef]

Shirai, T.

T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[CrossRef]

Simon, D. S.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[CrossRef]

Sun, B.

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Wang, K.

D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Wei, Q.

M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Welsh, S. S.

Wu, L.-A.

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

Xia, Y.

Xiong, J.

D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Xu, P.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Yin, S. Z.

F. T. S. Yu, S. Jutamulia, S. Z. Yin, Introduction to Information Optics (Academic, 2001).

Yu, F. T. S.

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
[CrossRef]

F. T. S. Yu, S. Jutamulia, S. Z. Yin, Introduction to Information Optics (Academic, 2001).

Zhang, M.

M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Zhang, P.

Zhang, Y.-R.

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

Zhu, Z. H.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Zhuang, S. L.

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
[CrossRef]

Appl. Opt (1)

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980).
[CrossRef]

Appl. Phys. Lett. (1)

G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

Chin. Opt. Lett. (1)

Opt. Express (3)

Phys. Rev. A (12)

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011).
[CrossRef]

N. D. Hardy, J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87, 023820 (2013).
[CrossRef]

M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013).
[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[CrossRef]

D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010).
[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

J. Cheng, S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[CrossRef]

M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Other (3)

H. D. Hardy, Analyzing and Improving Image Quality in Reflective Ghost Imaging (MIT, 2011).

F. T. S. Yu, S. Jutamulia, S. Z. Yin, Introduction to Information Optics (Academic, 2001).

F. W. Billmeyer, M. Saltzman, Principles of Color Technology, 2nd ed. (Wiley-Interscience, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Setup for thermal ghost imaging with real-time pseudocolor coding technique. RGGP, rotating ground glass plate; BS, beam splitter; BD, bucket detector. (b) Incoherent optical information processing system ( 4 f system), where f is the focal length of the lens.

Fig. 2.
Fig. 2.

(a) Setup for filter of equal spatial frequency false color coding. High-pass filter, red spectral band; low-pass filter, blue spectral band. (b) Setup for filter of the equal density pseudocolor coding. All-pass filter, red spectral band; reverse filter, green spectral band.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = 1 + 1 2 cos ( 2 π ξ o x 1 ) + 1 2 cos ( 2 π η 0 y 1 ) ,
F ( x 1 , y 1 ; λ ) = T ( ξ , η ) + 1 4 [ T ( ξ ξ o , η ) + T ( ξ + ξ 0 , η ) + T ( ξ , η η 0 ) + T ( ξ , η + η 0 ) ] ,
G ( ξ , η ; λ ) = T b ( ξ ξ o , η ) H 1 ( η ) + T b ( ξ , η + η 0 ) H 1 ( ξ ) + T r ( ξ , η η 0 ) H 2 ( ξ ) + T r ( ξ + ξ 0 , η ) H 2 ( η ) ,
g ( x 1 , y 1 ; λ ) = F [ T b ( ξ ξ o , η ) H 1 ( η ) + T b ( ξ , η + η 0 ) H 1 ( ξ ) ] + F [ T r ( ξ , η η 0 ) H 2 ( ξ ) + T r ( ξ + ξ 0 , η ) H 2 ( η ) ] = exp ( j 2 π ξ 0 x 3 ) t b ( x 3 , y 3 ) * h 1 ( y 3 ) + exp ( j 2 π η 0 y 3 ) t b ( x 3 , y 3 ) * h 1 ( x 3 ) + exp ( j 2 π η 0 y 3 ) t r ( x 3 , y 3 ) * h 2 ( x 3 ) + exp ( j 2 π ξ 0 x 3 ) t r ( x 3 , y 3 ) * h 2 ( y 3 ) ,
E o ( x⃗ o , t ) = E o r ( x⃗ o , t ) + E o b ( x⃗ o , t ) ; E i ( x⃗ i , t ) = E i r ( x⃗ i , t ) + E i b ( x⃗ i , t ) + E i g ( x⃗ i , t ) ,
E o a ( x⃗ o , t ) = d ω o a d q⃗ e i ω o a t V ( q⃗ o a ) ε ( ω o a ) × H o a ( x⃗ o , q⃗ o a ; t ) g a ( x⃗ o ) ; E i a ( x⃗ i , t ) = d ω i a d q⃗ e i ω i a t V ( q⃗ i a ) ε ( ω i a ) × H i a ( x⃗ i , q⃗ i a ; t ) ,
g a ( x⃗ o ) = { exp ( j 2 π ξ 0 x 3 ) t b ( x 3 , y 3 ) * h 1 ( y 3 ) + exp ( j 2 π η 0 y 3 ) t b ( x 3 , y 3 ) * h 1 ( x 3 ) , a = blue exp ( j 2 π η 0 y 3 ) t r ( x 3 , y 3 ) * h 2 ( x 3 ) + exp ( j 2 π ξ 0 x 3 ) t r ( x 3 , y 3 ) * h 2 ( y 3 ) , a = red .
C ( x⃗ o , x⃗ i , t ) = ( | E o b ( x⃗ o , t ) | 2 | E i b ( x⃗ i , t ) | 2 | E o b ( x⃗ o , t ) | 2 | E i b ( x⃗ i , t ) | 2 ) + ( | E o r ( x⃗ o , t ) | 2 | E i r ( x⃗ i , t ) | 2 | E o r ( x⃗ o , t ) | 2 | E i r ( x⃗ i , t ) | 2 ) = C b ( x⃗ o , x⃗ i , t ) + C r ( x⃗ o , x⃗ i , t ) ,
C a ( x⃗ o , x⃗ i , t ) = | E o a ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 | E o a ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 = d ω o a d ω o a d q⃗ o a d q⃗ o a d ω i a d ω i a d q⃗ i a d q⃗ i a × H o a * ( x⃗ o , q⃗ o a ; ω o a ) H o a ( x⃗ o , q⃗ o a ; ω o a ) H i a * ( x⃗ i , q⃗ i a ; ω i a ) H i a ( x⃗ i , q⃗ i a ; ω i a ) × g a * ( x⃗ o ) g a ( x⃗ o ) e i ( ω o a ω o a ) t e i ( ω i a ω i a ) t G ( q⃗ o a , q⃗ o a , q⃗ i a , q⃗ i a , ω o a , ω o a , ω i a , ω i a ) ,
G ( q⃗ o a , q⃗ o a , q⃗ i a , q⃗ i a , ω o a , ω o a , ω i a , ω i a ) = V * ( q⃗ o a ) V ( q⃗ o a ) V * ( q⃗ i a ) V ( q⃗ i a ) ε * ( ω o a ) ε ( ω o a ) ε * ( ω i a ) ε ( ω i a ) V * ( q⃗ o a ) V ( q⃗ o a ) V * ( q⃗ i a ) V ( q⃗ i a ) ε * ( ω o a ) ε ( ω o a ) ε * ( ω i a ) ε ( ω i a ) ,
G ( q⃗ o a , q⃗ o a , q⃗ i a , q⃗ i a , ω o a , ω o a , ω i a , ω i a ) = V * ( q⃗ o a ) V ( q⃗ o a ) V * ( q⃗ i a ) V ( q⃗ i a ) ε * ( ω o a ) ε ( ω o a ) ε * ( ω i a ) ε ( ω i a ) ,
C ( x⃗ o , x⃗ i , t ) = C b ( x⃗ o , x⃗ i , t ) + C r ( x⃗ o , x⃗ i , t ) = B b | d x⃗ o d x⃗ i W ( x⃗ o , x⃗ i ) H o r ( x⃗ o , x⃗ o ; Ω r ) H i r * ( x⃗ i , x⃗ i ; Ω r ) | 2 × Δ λ b | exp ( j 2 π ξ 0 x 3 ) t b ( x 3 , y 3 ) * h 1 ( y 3 ) + exp ( j 2 π η 0 y 3 ) t b ( x 3 , y 3 ) * h 1 ( x 3 ) | 2 + B r | d x⃗ o d x⃗ i W ( x⃗ o , x⃗ i ) H o b ( x⃗ o , x⃗ o ; Ω b ) H i b * ( x⃗ i , x⃗ i ; Ω b ) | 2 × Δ λ r | exp ( j 2 π η 0 y 3 ) t r ( x 3 , y 3 ) * h 2 ( x 3 ) + exp ( j 2 π ξ 0 x 3 ) t r ( x 3 , y 3 ) * h 2 ( y 3 ) | 2 ,
H ( ξ ) = { 1 , ξ 0 1 , otherwise ; H ( η ) = { 1 , η 0 1 , otherwise .
G ( ξ , η ; λ ) = T r ( ξ ξ o , η ) + T r ( ξ , η η 0 ) + T g ( ξ ξ o , η ) H ( η ) + T g ( ξ , η η 0 ) H ( ξ ) .
g ( x 3 , y 3 ; λ ) = F [ T r ( ξ ξ o , η ) + T r ( ξ , η η 0 ) ] + F [ T g ( ξ ξ o , η ) H ( η ) + T g ( ξ , η η 0 ) H ( ξ ) ] = [ exp ( j 2 π ξ 0 x 3 ) + exp ( j 2 π η 0 y 3 ) ] t r ( x 3 , y 3 ) + [ exp ( j 2 π ξ 0 x 3 ) + exp ( j 2 π η 0 y 3 ) ] t g n ( x 3 , y 3 ) ,
t g n ( x 3 , y 3 ) = t g ( x 3 , y 3 ) 2 t g ( x 3 , y 3 ) .
C ( x⃗ o , x⃗ i , t ) = C r ( x⃗ o , x⃗ i , t ) + C g ( x⃗ o , x⃗ i , t ) = B r | d x⃗ o d x⃗ i W ( x⃗ o , x⃗ i ) H o r ( x⃗ o , x⃗ o ; Ω r ) H i r * ( x⃗ i , x⃗ i ; Ω r ) | 2 × Δ λ r | [ exp ( j 2 π ξ 0 x 3 ) + exp ( j 2 π η 0 y 3 ) ] t r ( x 3 , y 3 ) | 2 + B g | d x⃗ o d x⃗ i W ( x⃗ o , x⃗ i ) H o g ( x⃗ o , x⃗ o ; Ω g ) H i g * ( x⃗ i , x⃗ i ; Ω g ) | 2 × Δ λ g | [ exp ( j 2 π ξ 0 x 3 ) + exp ( j 2 π η 0 y 3 ) ] t g n ( x 3 , y 3 ) | 2 .
E o i ( x⃗ o , t ) = d ω o i d q⃗ e i ω o i t V ( q⃗ o i ) ε ( ω o i ) H o i ( x⃗ o , q⃗ o i ; t ) .
C a ( x⃗ o , x⃗ i , t ) = ( | E o a ( x⃗ o , t ) | 2 + | E o i ( x⃗ o , t ) | 2 ) | E i a ( x⃗ i , t ) | 2 | E o a ( x⃗ o , t ) | 2 + | E o i ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 = | E o a ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 | E o a ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 + | E o i ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 | E o i ( x⃗ o , t ) | 2 | E i a ( x⃗ i , t ) | 2 .
C ( x⃗ o , x⃗ i ) = C ( x⃗ o , x⃗ i ) + C ,

Metrics