M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express 20, 2858–2875 (2012).

[CrossRef]

S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correlation singularities in partially coherent electromagnetic beams,” Opt. Lett. 37, 4179–4181 (2012).

[CrossRef]

M. L. Marasinghe, D. M. Paganin, and M. Premaratne, “Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres,” Opt. Lett. 36, 936–938 (2011).

[CrossRef]

T. Hassinen, J. Tervo, T. Setälä, and A. T. Friberg, “Hanbury Brown-Twiss effect with electromagnetic waves,” Opt. Express 19, 15188–15195 (2011).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express 18, 6628–6641 (2010).

[CrossRef]

Y. Gu and G. Gbur, “Topological reactions of optical correlation vortices,” Opt. Commun. 282, 709–716 (2009).

[CrossRef]

T. van Dijk and T. D. Visser, “Evolution of singularities in a partially coherent vortex beam,” J. Opt. Soc. Am. A 26, 741–744 (2009).

[CrossRef]

T. van Dijk, H. F. Schouten, and T. D. Visser, “Coherence singularities in the field generated by partially coherent sources,” Phys. Rev. A 79, 033805 (2009).

[CrossRef]

S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A 10, 055001 (2008).

[CrossRef]

G. Gbur and G. A. Swartzlander, “Complete transverse representation of a correlation singularity of a partially coherent field,” J. Opt. Soc. Am. B 25, 1422–1429 (2008).

[CrossRef]

T. D. Visser and R. W. Schoonover, “A cascade of singular field patterns in Young’s interference experiment,” Opt. Commun. 281, 1–6 (2008).

[CrossRef]

G. A. Swartzlander and R. I. Hernandez-Aranda, “Optical Rankine vortex and anomalous circulation of light,” Phys. Rev. Lett. 99, 163901 (2007).

[CrossRef]

W. Wang and M. Takeda, “Coherence current, coherence vortex, and the conservation law of coherence,” Phys. Rev. Lett. 96, 223904 (2006).

[CrossRef]

A. Bezryadina, D. N. Neshev, A. S. Desyatnikov, J. Young, Z. Chen, and Y. S. Kivshar, “Observation of topological transformations of optical vortices in two-dimensional photonic lattices,” Opt. Express 14, 8317–8327 (2006).

[CrossRef]

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun. 259, 428–435 (2006).

[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).

[CrossRef]

G. A. Swartzlander and J. Schmit, “Temporal correlation vortices and topological dispersion,” Phys. Rev. Lett. 93, 093901 (2004).

[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. A 21, 1895–1900 (2004).

[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).

[CrossRef]

D. W. Diehl and T. D. Visser, “Phase singularities of the longitudinal field components in high-aperture systems,” J. Opt. Soc. Am. A 21, 2103–2108 (2004).

[CrossRef]

A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004).

[CrossRef]

D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097–2102 (2004).

[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent wavefields,” J. Opt. A 6, S239–S242 (2004).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).

[CrossRef]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).

[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371–380 (2003).

[CrossRef]

I. Freund, “Critical foliations,” Opt. Lett. 26, 545–547 (2001).

[CrossRef]

I. Freund and D. A. Kessler, “Critical point trajectory bundles in singular wave fields,” Opt. Commun. 187, 71–90 (2001).

[CrossRef]

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

I. Freund, “Optical vortex trajectories,” Opt. Commun. 181, 19–33 (2000).

[CrossRef]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).

[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).

[CrossRef]

A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004).

[CrossRef]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).

[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

Y. Gu and G. Gbur, “Topological reactions of optical correlation vortices,” Opt. Commun. 282, 709–716 (2009).

[CrossRef]

G. Gbur and G. A. Swartzlander, “Complete transverse representation of a correlation singularity of a partially coherent field,” J. Opt. Soc. Am. B 25, 1422–1429 (2008).

[CrossRef]

G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun. 259, 428–435 (2006).

[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent wavefields,” J. Opt. A 6, S239–S242 (2004).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371–380 (2003).

[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).

[CrossRef]

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2010), Vol. 55, pp. 285–341.

Y. Gu and G. Gbur, “Topological reactions of optical correlation vortices,” Opt. Commun. 282, 709–716 (2009).

[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).

[CrossRef]

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

G. A. Swartzlander and R. I. Hernandez-Aranda, “Optical Rankine vortex and anomalous circulation of light,” Phys. Rev. Lett. 99, 163901 (2007).

[CrossRef]

C. Hsiung, A First Course in Differential Geometry (International, 1997), p. 266.

S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A 10, 055001 (2008).

[CrossRef]

I. Freund and D. A. Kessler, “Critical point trajectory bundles in singular wave fields,” Opt. Commun. 187, 71–90 (2001).

[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371–380 (2003).

[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. A 21, 1895–1900 (2004).

[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express 20, 2858–2875 (2012).

[CrossRef]

M. L. Marasinghe, D. M. Paganin, and M. Premaratne, “Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres,” Opt. Lett. 36, 936–938 (2011).

[CrossRef]

M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express 18, 6628–6641 (2010).

[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. A 21, 1895–1900 (2004).

[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).

[CrossRef]

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express 20, 2858–2875 (2012).

[CrossRef]

M. L. Marasinghe, D. M. Paganin, and M. Premaratne, “Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres,” Opt. Lett. 36, 936–938 (2011).

[CrossRef]

M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express 18, 6628–6641 (2010).

[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. A 21, 1895–1900 (2004).

[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).

[CrossRef]

M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express 20, 2858–2875 (2012).

[CrossRef]

M. L. Marasinghe, D. M. Paganin, and M. Premaratne, “Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres,” Opt. Lett. 36, 936–938 (2011).

[CrossRef]

M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express 18, 6628–6641 (2010).

[CrossRef]

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

G. A. Swartzlander and J. Schmit, “Temporal correlation vortices and topological dispersion,” Phys. Rev. Lett. 93, 093901 (2004).

[CrossRef]

T. D. Visser and R. W. Schoonover, “A cascade of singular field patterns in Young’s interference experiment,” Opt. Commun. 281, 1–6 (2008).

[CrossRef]

S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correlation singularities in partially coherent electromagnetic beams,” Opt. Lett. 37, 4179–4181 (2012).

[CrossRef]

T. van Dijk, H. F. Schouten, and T. D. Visser, “Coherence singularities in the field generated by partially coherent sources,” Phys. Rev. A 79, 033805 (2009).

[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371–380 (2003).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).

[CrossRef]

S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A 10, 055001 (2008).

[CrossRef]

A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004).

[CrossRef]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).

[CrossRef]

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, pp. 83–110.

S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, 1994), pp. 174–180.

G. Gbur and G. A. Swartzlander, “Complete transverse representation of a correlation singularity of a partially coherent field,” J. Opt. Soc. Am. B 25, 1422–1429 (2008).

[CrossRef]

G. A. Swartzlander and R. I. Hernandez-Aranda, “Optical Rankine vortex and anomalous circulation of light,” Phys. Rev. Lett. 99, 163901 (2007).

[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).

[CrossRef]

G. A. Swartzlander and J. Schmit, “Temporal correlation vortices and topological dispersion,” Phys. Rev. Lett. 93, 093901 (2004).

[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. A 21, 1895–1900 (2004).

[CrossRef]

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

W. Wang and M. Takeda, “Coherence current, coherence vortex, and the conservation law of coherence,” Phys. Rev. Lett. 96, 223904 (2006).

[CrossRef]

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

T. van Dijk, H. F. Schouten, and T. D. Visser, “Coherence singularities in the field generated by partially coherent sources,” Phys. Rev. A 79, 033805 (2009).

[CrossRef]

T. van Dijk and T. D. Visser, “Evolution of singularities in a partially coherent vortex beam,” J. Opt. Soc. Am. A 26, 741–744 (2009).

[CrossRef]

A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004).

[CrossRef]

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, pp. 83–110.

S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correlation singularities in partially coherent electromagnetic beams,” Opt. Lett. 37, 4179–4181 (2012).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

T. van Dijk, H. F. Schouten, and T. D. Visser, “Coherence singularities in the field generated by partially coherent sources,” Phys. Rev. A 79, 033805 (2009).

[CrossRef]

T. van Dijk and T. D. Visser, “Evolution of singularities in a partially coherent vortex beam,” J. Opt. Soc. Am. A 26, 741–744 (2009).

[CrossRef]

T. D. Visser and R. W. Schoonover, “A cascade of singular field patterns in Young’s interference experiment,” Opt. Commun. 281, 1–6 (2008).

[CrossRef]

G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun. 259, 428–435 (2006).

[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent wavefields,” J. Opt. A 6, S239–S242 (2004).

[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).

[CrossRef]

D. W. Diehl and T. D. Visser, “Phase singularities of the longitudinal field components in high-aperture systems,” J. Opt. Soc. Am. A 21, 2103–2108 (2004).

[CrossRef]

D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097–2102 (2004).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).

[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371–380 (2003).

[CrossRef]

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2010), Vol. 55, pp. 285–341.

S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A 10, 055001 (2008).

[CrossRef]

W. Wang and M. Takeda, “Coherence current, coherence vortex, and the conservation law of coherence,” Phys. Rev. Lett. 96, 223904 (2006).

[CrossRef]

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A 10, 055001 (2008).

[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent wavefields,” J. Opt. A 6, S239–S242 (2004).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).

[CrossRef]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).

[CrossRef]

A. Boivin, J. Dow, and E. Wolf, “Energy flow in the neighborhood of the focus of a coherent beam,” J. Opt. Soc. Am. 57, 1171–1175 (1967).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A 10, 055001 (2008).

[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent wavefields,” J. Opt. A 6, S239–S242 (2004).

[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).

[CrossRef]

D. W. Diehl and T. D. Visser, “Phase singularities of the longitudinal field components in high-aperture systems,” J. Opt. Soc. Am. A 21, 2103–2108 (2004).

[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. A 21, 1895–1900 (2004).

[CrossRef]

T. van Dijk and T. D. Visser, “Evolution of singularities in a partially coherent vortex beam,” J. Opt. Soc. Am. A 26, 741–744 (2009).

[CrossRef]

D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097–2102 (2004).

[CrossRef]

J. F. Nye, “Unfolding of higher-order wave dislocations,” J. Opt. Soc. Am. A 15, 1132–1138 (1998).

[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).

[CrossRef]

Y. Gu and G. Gbur, “Topological reactions of optical correlation vortices,” Opt. Commun. 282, 709–716 (2009).

[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).

[CrossRef]

A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004).

[CrossRef]

I. Freund, “Optical vortex trajectories,” Opt. Commun. 181, 19–33 (2000).

[CrossRef]

I. Freund and D. A. Kessler, “Critical point trajectory bundles in singular wave fields,” Opt. Commun. 187, 71–90 (2001).

[CrossRef]

G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun. 259, 428–435 (2006).

[CrossRef]

T. D. Visser and R. W. Schoonover, “A cascade of singular field patterns in Young’s interference experiment,” Opt. Commun. 281, 1–6 (2008).

[CrossRef]

A. Bezryadina, D. N. Neshev, A. S. Desyatnikov, J. Young, Z. Chen, and Y. S. Kivshar, “Observation of topological transformations of optical vortices in two-dimensional photonic lattices,” Opt. Express 14, 8317–8327 (2006).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371–380 (2003).

[CrossRef]

T. Hassinen, J. Tervo, T. Setälä, and A. T. Friberg, “Hanbury Brown-Twiss effect with electromagnetic waves,” Opt. Express 19, 15188–15195 (2011).

[CrossRef]

M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express 18, 6628–6641 (2010).

[CrossRef]

M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express 20, 2858–2875 (2012).

[CrossRef]

G. P. Karman, A. van Duijl, and J. P. Woerdman, “Creation and annihilation of phase singularities in a focal field,” Opt. Lett. 22, 1503–1505 (1997).

[CrossRef]

M. L. Marasinghe, D. M. Paganin, and M. Premaratne, “Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres,” Opt. Lett. 36, 936–938 (2011).

[CrossRef]

S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correlation singularities in partially coherent electromagnetic beams,” Opt. Lett. 37, 4179–4181 (2012).

[CrossRef]

I. Freund, “Critical foliations,” Opt. Lett. 26, 545–547 (2001).

[CrossRef]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).

[CrossRef]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).

[CrossRef]

T. van Dijk, H. F. Schouten, and T. D. Visser, “Coherence singularities in the field generated by partially coherent sources,” Phys. Rev. A 79, 033805 (2009).

[CrossRef]

W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006).

[CrossRef]

G. A. Swartzlander and R. I. Hernandez-Aranda, “Optical Rankine vortex and anomalous circulation of light,” Phys. Rev. Lett. 99, 163901 (2007).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

W. Wang and M. Takeda, “Coherence current, coherence vortex, and the conservation law of coherence,” Phys. Rev. Lett. 96, 223904 (2006).

[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).

[CrossRef]

G. A. Swartzlander and J. Schmit, “Temporal correlation vortices and topological dispersion,” Phys. Rev. Lett. 93, 093901 (2004).

[CrossRef]

G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001).

[CrossRef]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).

[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

J. F. Nye, Natural Focusing and Fine Structure of Light (IOP Publishing, 1999).

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, pp. 83–110.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2010), Vol. 55, pp. 285–341.

S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, 1994), pp. 174–180.

C. Hsiung, A First Course in Differential Geometry (International, 1997), p. 266.