L. A. Ambrosio and H. E. Hernandez-Figueroa, “Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate system. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

P. L. Marston, “Quasi-Gaussian Bessel-beam superposition: application to the scattering of focused waves by spheres,” J. Acoust. Soc. Am. 129, 1773–1782 (2011).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” [Invited Review Paper] J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, “Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series,” Phys. Rev. A 43, 5321–5331 (1991).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beams,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beams,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beams,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

G. Gouesbet and J. A. Lock, “A list of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus,” [Commemorative Invited Review for the 50th Anniversary of Applied Optics] Appl. Opt. 52, 897–916 (2013).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate system. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” [Invited Review Paper] J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

G. Gouesbet, “Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series,” Phys. Rev. A 43, 5321–5331 (1991).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer-Verlag, 2011).

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate system. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer-Verlag, 2011).

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

G. Gouesbet and J. A. Lock, “A list of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus,” [Commemorative Invited Review for the 50th Anniversary of Applied Optics] Appl. Opt. 52, 897–916 (2013).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate system. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988).

[CrossRef]

P. L. Marston, “Quasi-Gaussian Bessel-beam superposition: application to the scattering of focused waves by spheres,” J. Acoust. Soc. Am. 129, 1773–1782 (2011).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

G. Gouesbet and J. A. Lock, “A list of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus,” [Commemorative Invited Review for the 50th Anniversary of Applied Optics] Appl. Opt. 52, 897–916 (2013).

[CrossRef]

P. L. Marston, “Quasi-Gaussian Bessel-beam superposition: application to the scattering of focused waves by spheres,” J. Acoust. Soc. Am. 129, 1773–1782 (2011).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beams,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).

[CrossRef]

G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” [Invited Review Paper] J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate system. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

G. Gouesbet, “Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series,” Phys. Rev. A 43, 5321–5331 (1991).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, eds., Chaos and Its Reconstruction (Novascience, 2003).

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer-Verlag, 2011).