Abstract

We analyze how complicated a linear optical component has to be if it is to perform one of a range of functions. Specifically, we devise an approach to evaluating the number of real parameters that must be specified in the device design or fabrication, based on the singular value decomposition of the linear operator that describes the device. This approach can be used for essentially any linear device, including space-, frequency-, or time-dependent systems, in optics, or in other linear wave problems. We analyze examples including spatial mode converters and various classes of wavelength demultiplexers. We consider limits on the functions that can be performed by simple optical devices, such as thin lenses, mirrors, gratings, modulators, and fixed optical filters, and discuss the potential for greater functionalities using modern nanophotonics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [CrossRef]
  3. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
    [CrossRef]
  4. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
    [CrossRef]
  5. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
    [CrossRef]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [CrossRef]
  7. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  8. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
    [CrossRef]
  9. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  10. G. Veronis and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [CrossRef]
  11. D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
    [CrossRef]
  12. M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt. 42, 1330–1345 (2003).
    [CrossRef]
  13. M. Gerken and D. A. B. Miller, “Limits to the performance of dispersive thin-film stacks,” Appl. Opt. 44, 3349–3357 (2005).
    [CrossRef]
  14. Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization By low rank adjustments: an extremely compact mode separator,” Opt. Lett. 30, 141–143 (2005).
    [CrossRef]
  15. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011).
    [CrossRef]
  16. M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
    [CrossRef]
  17. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012).
    [CrossRef]
  18. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112  Tb/s space-division multiplexed DWDM transmission with 14  b/s/Hz aggregate spectral efficiency over a 76.8 km seven-core fiber,” Opt. Express 19, 16665–16671 (2011).
    [CrossRef]
  19. E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
    [CrossRef]
  20. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
    [CrossRef]
  21. P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19, 16636–16652 (2011).
    [CrossRef]
  22. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  23. R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
    [CrossRef]
  24. R. Chen, J. Fu, D. A. B. Miller, and J. S. Harris, “Design and analysis of CMOS-controlled tunable photodetectors for multiwavelength discrimination,” J. Lightwave Technol. 27, 5451–5460 (2009).
    [CrossRef]
  25. Z. Yu and S. H. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010).
    [CrossRef]
  26. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  27. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef]
  28. D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1–A18 (2007).
    [CrossRef]
  29. D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
    [CrossRef]
  30. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express (to be published).
  31. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. (to be published).
  32. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
    [CrossRef]
  33. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  34. M. Gerken and D. A. B. Miller, “The relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks,” Opt. Lett. 30, 2475–2477 (2005).
    [CrossRef]
  35. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Modern Opt. 34, 1589–1617 (1987).
    [CrossRef]
  36. H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
    [CrossRef]
  37. B. Momeni and A. Abidi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).
    [CrossRef]
  38. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.
  39. D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University, 2008).
  40. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  41. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
    [CrossRef]
  42. T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
    [CrossRef]
  43. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Co., 2005).
  44. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]
  45. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987).
    [CrossRef]
  46. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  47. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [CrossRef]
  48. T. Tanemura, University of Tokyo, Information Devices Laboratory, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan (personal communication, 2012).
  49. D. A. B. Miller, “Communicating with waves between volumes—evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000).
    [CrossRef]
  50. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000).
    [CrossRef]
  51. R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222–244 (2002).
    [CrossRef]
  52. A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
    [CrossRef]
  53. A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes in large-aperture approximation,” Opt. Lett. 32, 611–613 (2007).
    [CrossRef]
  54. M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag. 56, 524–531 (2008).
    [CrossRef]
  55. R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010).
    [CrossRef]
  56. R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012).
    [CrossRef]

2012 (6)

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012).
[CrossRef]

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[CrossRef]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
[CrossRef]

R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012).
[CrossRef]

2011 (6)

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19, 16636–16652 (2011).
[CrossRef]

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112  Tb/s space-division multiplexed DWDM transmission with 14  b/s/Hz aggregate spectral efficiency over a 76.8 km seven-core fiber,” Opt. Express 19, 16665–16671 (2011).
[CrossRef]

V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011).
[CrossRef]

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

2010 (5)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Z. Yu and S. H. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010).
[CrossRef]

R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010).
[CrossRef]

2009 (2)

2008 (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag. 56, 524–531 (2008).
[CrossRef]

2007 (6)

A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes in large-aperture approximation,” Opt. Lett. 32, 611–613 (2007).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[CrossRef]

G. Veronis and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[CrossRef]

D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1–A18 (2007).
[CrossRef]

D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

2006 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

2005 (7)

M. Gerken and D. A. B. Miller, “Limits to the performance of dispersive thin-film stacks,” Appl. Opt. 44, 3349–3357 (2005).
[CrossRef]

Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization By low rank adjustments: an extremely compact mode separator,” Opt. Lett. 30, 141–143 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

M. Gerken and D. A. B. Miller, “The relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks,” Opt. Lett. 30, 2475–2477 (2005).
[CrossRef]

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

B. Momeni and A. Abidi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).
[CrossRef]

2004 (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

2003 (3)

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt. 42, 1330–1345 (2003).
[CrossRef]

2002 (1)

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222–244 (2002).
[CrossRef]

2000 (3)

1998 (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1992 (1)

1987 (2)

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987).
[CrossRef]

R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Modern Opt. 34, 1589–1617 (1987).
[CrossRef]

1971 (1)

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Abidi, A.

B. Momeni and A. Abidi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Bai, N.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Balram, K. C.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Bolle, C.

Brongersma, M. L.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Burrows, E. C.

Burvall, A.

Cai, X.

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Chandrasekhar, S.

Chang-Hasnain, C. J.

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Chen, R.

R. Chen, J. Fu, D. A. B. Miller, and J. S. Harris, “Design and analysis of CMOS-controlled tunable photodetectors for multiwavelength discrimination,” J. Lightwave Technol. 27, 5451–5460 (2009).
[CrossRef]

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

Chin, H.

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Courtial, J.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

Dal Negro, L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Dammann, H.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Dimarcello, F. V.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Djordjevic, S. S.

Dudley, A.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Esmaeelpour, M.

Essiambre, R.-J.

Fan, S.

Fan, S. H.

Z. Yu and S. H. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010).
[CrossRef]

G. Veronis and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[CrossRef]

Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization By low rank adjustments: an extremely compact mode separator,” Opt. Lett. 30, 141–143 (2005).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

Forbes, A.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Friberg, A. T.

A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes in large-aperture approximation,” Opt. Lett. 32, 611–613 (2007).
[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Fu, J.

Geisler, D. J.

Georgas, M.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.

Gerken, M.

Gnauck, A. H.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Co., 2005).

Gortler, K.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Harris, J. S.

R. Chen, J. Fu, D. A. B. Miller, and J. S. Harris, “Design and analysis of CMOS-controlled tunable photodetectors for multiwavelength discrimination,” J. Lightwave Technol. 27, 5451–5460 (2009).
[CrossRef]

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Huang, Y.-K.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Ip, E.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Jensen, M. A.

M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag. 56, 524–531 (2008).
[CrossRef]

Ji, P.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Jiao, Y.

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Karelin, M.

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Konsbruck, R. L.

R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Krummrich, P. M.

Ku, P.-C.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Lavery, M. P. J.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

Leger, J. R.

Leu, J.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.

Leyva, V.

Lingle, R.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Liu, V.

Liu, X.

Ly-Gagnon, D.-S.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Ma, K.

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

Martinsson, P.

A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes in large-aperture approximation,” Opt. Lett. 32, 611–613 (2007).
[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
[CrossRef]

Mateo, E.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

McCurdy, A. H.

Miller, D. A. B.

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
[CrossRef]

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011).
[CrossRef]

R. Chen, J. Fu, D. A. B. Miller, and J. S. Harris, “Design and analysis of CMOS-controlled tunable photodetectors for multiwavelength discrimination,” J. Lightwave Technol. 27, 5451–5460 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1–A18 (2007).
[CrossRef]

M. Gerken and D. A. B. Miller, “The relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks,” Opt. Lett. 30, 2475–2477 (2005).
[CrossRef]

M. Gerken and D. A. B. Miller, “Limits to the performance of dispersive thin-film stacks,” Appl. Opt. 44, 3349–3357 (2005).
[CrossRef]

Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization By low rank adjustments: an extremely compact mode separator,” Opt. Lett. 30, 141–143 (2005).
[CrossRef]

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt. 42, 1330–1345 (2003).
[CrossRef]

D. A. B. Miller, “Communicating with waves between volumes—evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000).
[CrossRef]

R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000).
[CrossRef]

D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University, 2008).

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express (to be published).

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. (to be published).

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Momeni, B.

B. Momeni and A. Abidi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).
[CrossRef]

Monberg, E. M.

Moss, B.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.

Mumtaz, S.

Notomi, M.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Padgett, M. J.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

Peckham, D. W.

Piestun, R.

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222–244 (2002).
[CrossRef]

R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Qian, D.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Rakuljic, G. A.

Randel, S.

Ryf, R.

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Scott, R. P.

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[CrossRef]

Shamir, J.

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222–244 (2002).
[CrossRef]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Sierra, A.

Somaraju, R.

R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Stojanovic, V.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.

Su, T.

Sun, C.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Swanson, G. J.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Tanemura, T.

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

T. Tanemura, University of Tokyo, Information Devices Laboratory, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan (personal communication, 2012).

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Taunay, T. F.

Telatar, E.

R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012).
[CrossRef]

Thaning, A.

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Tomita, K.

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Trumpf, J.

R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010).
[CrossRef]

Tucker, R. S.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Veldkamp, W. B.

Veronis, G.

Vetterli, M.

R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Wahl, P.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

Wallace, J. W.

M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag. 56, 524–531 (2008).
[CrossRef]

Wang, T.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

White, J. S.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

Winzer, P. J.

Xu, L.

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

Yan, M. F.

Yariv, A.

Yoo, S. J. B.

Yu, Z.

Z. Yu and S. H. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010).
[CrossRef]

Zengerle, R.

R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Modern Opt. 34, 1589–1617 (1987).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

Zhu, B.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

B. Momeni and A. Abidi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Yu and S. H. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag. 56, 524–531 (2008).
[CrossRef]

IEEE Trans. Inf. Theory (2)

R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010).
[CrossRef]

R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012).
[CrossRef]

J. Lightwave Technol. (4)

J. Modern Opt. (1)

R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Modern Opt. 34, 1589–1617 (1987).
[CrossRef]

J. Opt. A (1)

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011).
[CrossRef]

Nanophotonics (1)

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012).
[CrossRef]

Nat. Mater. (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Nat. Photonics (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

New J. Phys. (1)

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[CrossRef]

Opt. Commun. (1)

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. B (2)

H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Proc. IEEE (4)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012).
[CrossRef]

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222–244 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science (2)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Other (6)

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express (to be published).

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. (to be published).

T. Tanemura, University of Tokyo, Information Devices Laboratory, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan (personal communication, 2012).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Co., 2005).

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.

D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of an example device with an input waveguide with MI modes and an output waveguide with MO modes. Here the input (output) mathematical space corresponds to the functions on the input (output) surface.

Fig. 2.
Fig. 2.

Illustration for the case of MI=4 and MO=2 of two ways of writing the matrix product D=VDdiagU. Both methods (a) and (b) lead to the same results for any multiplication of the matrix D by a vector. Method (a) has strictly unitary square matrices for both U and V, but it has more parameters than the reduced version (b). Note that the bottom two rows of the rightmost matrix in (a) never enter into any calculation in multiplying a vector by D.

Fig. 3.
Fig. 3.

Architecture for a single-mode converter based on Fourier optics. (The x axis is into the plane of the drawing.)

Fig. 4.
Fig. 4.

Wavelength demultiplexing of four wavelengths λ1, λ2, λ3, and λ4 with ring resonator drop filters each of different radius to resonate at different ones of the input wavelengths. The fourth, dashed channel is optional in principle because only the fourth wavelength remains in the original guide with ideal devices.

Fig. 5.
Fig. 5.

Illustration of example transmitting, device, and receiving volumes. Sources or waves in the transmitting volume lead to waves on the device input surface through the coupling operator GTI. Waves on the device output surface lead to waves in the receiving volume through the coupling operator GOR.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

|ϕO=D|ϕI.
D=msDm|ϕDOmϕDIm|
D=VDdiagU,
ND=2MOMI
Mmin=min(MO,MI),
NU=q=1MO2MI2q=2MOMIMO(MO+1)
NV=q=1MO2MO2q=MO2MO
ND=2MOMIMO(MO+1)+MO2MO+2MO=2MOMI,
ND=2(MO+MI1)
ND=2MC(MI+MOMC)
ND=2MC(MI+MOMC12)
ϕO(x,y)=D(x,y)ϕI(x,y).
ϕO(t)=D(t)ϕI(t).
ϕO(t)=G(t,t1)ϕI(t1)dt1.
|ϕO=G|ϕI.
ND2M
x,yϕNI(x,y)ϕI*(x,y)dxdy=0
ϕMO(x,y)ϕO(x,y)/ϕA(x,y)
ϕO(ω)=D(ω)ϕI(ω),
|ϕIp=1tIexp(iωpt),
MO=MIMSO=MI2
|ϕO[|ϕOb1λ1|ϕOb2λ1|ϕOb1λ2|ϕOb2λ2|ϕOb1λ3|ϕOb2λ3]=VDDiagU|ϕI[v11v21000000v(MI+1)2v(MI+2)2000000v(2MI+1)3v(2MI+2)3][sD1000sD2000sD3][100010001][|ϕIλ1|ϕIλ2|ϕIλ3].
ND=2MI2.
ND=MI2.
ND=3MI1.
ND=2MI1.
ND=MI1.
GTI=psTIp|ϕIpϕTp|
GTIGTI|ϕTp=|sTIp|2|ϕTp,
GTIGTI|ϕIp=|sTIp|2|ϕIp.
GOR=qsORq|ϕRqϕOq|
p|sTIp|2=Tr(GTIGTI)=STI
q|sORq|2=Tr(GORGOR)=SOR.
STI=Tr(GTIGTI)=VTVI|GTI(rT,rI)|2dVIdVT

Metrics