Abstract

An effective method of speckle suppression using one 2D diffractive optical element (DOE) moving with constant velocity based on the periodic Barker code sequence is developed. We prove that this method has the same optical parameters as the method based on two 1D Barker code DOEs stretched and moving in orthogonal directions. We also show that DOE movement in a special direction allows the full numerical aperture of the objective lens to be used for speckle averaging by angle diversity. It is found that the 2D DOE based on a Barker code of length of 13 allows the speckle contrast to be decreased below the sensitivity of the human eye with optical losses of less than 10%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
    [CrossRef]
  2. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications. (Roberts, 2006).
  3. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchid, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010).
    [CrossRef]
  4. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998).
    [CrossRef]
  5. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010).
    [CrossRef]
  6. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
    [CrossRef]
  7. Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
    [CrossRef]
  8. J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
    [CrossRef]
  9. M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in 15th International MEMS Conference Digest (IEEE, 2002), pp. 568–573.
  10. A. Lapchuk, V. Yurlov, A. Lapchuk, S. Yun, J.-H. Song, and H.-S. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179–187 (2008).
    [CrossRef]
  11. R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.
  12. V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48, 80–90 (2009).
    [CrossRef]
  13. M. N. Akram, K. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010).
    [CrossRef]
  14. S.-D. An, A. Lapchuk, V. Yurlov, J. H. Song, H. W. Park, J. W. Jang, W. C. Shin, S. Kargapoltsev, and S.-K. Yun, “Speckle suppression in laser display using several partially coherent beams,” Opt. Express 17, 92–103 (2009).
    [CrossRef]
  15. A. Lapchuk, A. Kryuchyn, V. Petrov, V. Yurlov, and V. Klymenko, “Full speckle suppression in laser projectors using two Barker code-type optical diffractive elements,” J. Opt. Soc. Am. A 30, 22–31 (2013).
    [CrossRef]

2013 (1)

2012 (1)

Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
[CrossRef]

2010 (4)

2009 (2)

2008 (1)

2004 (2)

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
[CrossRef]

1998 (1)

Akram, M. N.

Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
[CrossRef]

M. N. Akram, K. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010).
[CrossRef]

An, S.

An, S.-D.

Brazas, J. C.

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in 15th International MEMS Conference Digest (IEEE, 2002), pp. 568–573.

Brown, D.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

Brown, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

Carlisle, C. B.

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

Champion, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

Chellappan, K. V.

Chen, X.

Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
[CrossRef]

Erden, E.

Freeman, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

Goodman, J. W.

Halldorsson, T.

Jang, J. W.

Kargapoltsev, S.

Kartashov, K.

Kartashov, V.

Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
[CrossRef]

Katagiri, B.

Kawakami, T.

Klymenko, V.

Kowarz, M. W.

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in 15th International MEMS Conference Digest (IEEE, 2002), pp. 568–573.

Kryuchyn, A.

Kubota, S.

Kuratomi, Y.

Lapchuk, A.

Monteverde, V.

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

Niesten, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

Park, H. W.

Petrov, V.

Petursson, P. R.

Phalen, J. G.

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in 15th International MEMS Conference Digest (IEEE, 2002), pp. 568–573.

Satoh, H.

Sekiya, K.

Shin, W. C.

Song, J.

Song, J. H.

Song, J.-H.

Sprague, R.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

Suzuki, Y.

Tomiyama, T.

Tong, Z.

Tong, Z. G. W.

Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
[CrossRef]

Trisnadi, J. I.

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
[CrossRef]

Tschudi, T.

Uchid, T.

Urey, H.

Wang, L.

Yang, H.

Yang, H.-S.

Yeo, I.

Yun, S.

Yun, S.-K.

Yurlov, V.

Appl. Opt. (5)

J. Display Technology (1)

Z. G. W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technology 8, 291–295 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

Other (3)

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in 15th International MEMS Conference Digest (IEEE, 2002), pp. 568–573.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, A. K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), Chap. 21.

J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications. (Roberts, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical scheme of the laser projector with two 1D Barker code DOEs.

Fig. 2.
Fig. 2.

Transparent plate with two 1D Barker code DOEs (three projections) situated at different sides.

Fig. 3.
Fig. 3.

Autocorrelation functions A0(x) and A(x) of the periodic Barker code sequence.

Fig. 4.
Fig. 4.

2D DOE structure based on two 1D Barker code DOE periodic structures (with N=7). The upper and left sides of the figure show a 1D Barker code DOE that the 2D DOE is based on. In this figure, white denotes grooves, and gray denotes lands.

Fig. 5.
Fig. 5.

Principal scheme of the speckle-suppression method with only horizontal DOE displacement: (a) transparent plate with DOE structure and (b) optical scheme of the method.

Fig. 6.
Fig. 6.

Autocorrelation function of the field at the screen for the Barker code DOE of length N=13: (a) M=1 (C=0.048), (b) M=2 (C=0.044), and (c) M=5 (C=0.043); M= (C=0.043).

Tables (1)

Tables Icon

Table 1. Speckle Contrast for 2D Barker Code DOEs of Different Lengths Moving with Different Speeds

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C=σI/I,
V⃗=Vxe^x+Vye^y,
Vx/Vy=MNorelseVy/Vx=MN,
C=Cx*Cy=122|A0(Du)A0(0)|2Q(u)du2|A(Dv)A(0)|2Q(v)dv,
Cx=2|A0(Du)A0(0)|2Q(u)du,
Cy=2|A(Dv)A(0)|2Q(v)dv,
C1/(N3).
C1/(N3)4.4%,
Ad(x1,x2,y1,y2)=1Δt0Vx,0TH(xNM+y1N*mx1)H*(xN*M+y2N*mx1)A0(x2x1+mod(x,T))dx,
F(x1,x2,y1,y2)=0T((x2x1)(N1)T)A0(x2x1+x)H(MN(xx1)+y1)H*(MN(xx1)+y2)dx+T((x2x1)(N1)T)TA0(x+x2x1)H(MN(xx1)+y1N)H*(MN(xx1)+y2)dx=Amax0TH(MN(xx1)+y1)H*(MN(xx1)+y2)dx+(AminAmax)T((x2x1)(N1)T)TH(MN(xx1)+y1)H*(MN(xx1)+y2)dx,
F(x1,x2,y1,y2)=CA(x2x1)A(y2y1),

Metrics